

    
      
          
            
  
Checkbox

Checkbox is a flexible test automation software.
It’s the main tool used in Ubuntu Certification program.

You can use checkbox without any modification to check if your system is
behaving correctly or you can develop your own set of tests to check your
needs. See Checkbox tutorials for details.


Warning

Documentation is under development. Some things are wrong, inaccurate or
describe development goals rather than current state.




Installation

Checkbox can be installed from a PPA
(recommended) or pypi on Ubuntu Precise (12.04)
or newer.

$ sudo add-apt-repository ppa:hardware-certification/public && sudo apt-get update && sudo apt-get install checkbox-ng








Running stable release update tests

Checkbox has special support for running stable release updates tests in an
automated manner. This runs all the jobs from the sru.test plan and sends the
results to the certification website.

To run SRU tests you will need to know the so-called Secure ID [http://plainbox.readthedocs.io/en/latest/glossary.html#term-secure-id] of the
device you are testing. Once you know that all you need to do is run:

$ checkbox sru $secure_id submission.xml





The second argument, submission.xml, is a name of the fallback file that is
only created when sending the data to the certification website fails to work
for any reason.






Table of contents



	Introduction to Checkbox
	Getting Started

	Checkbox Command Line
	checkbox-cli startprovider

	checkbox-cli list

	checkbox-cli list-bootstrapped

	checkbox-cli launcher

	checkbox-cli run





	Looking Deeper
	Providers









	Checkbox tutorials
	Creating an empty provider

	Adding a simple job to a provider

	Running jobs from a newly created provider

	Developing provider without constantly reinstalling it

	Improving job definition





	Checkbox Unit Types
	Job Unit
	File format and location

	Job Fields





	Test Plan Unit
	Test Plan Fields

	Examples





	Category Unit
	Category Fields





	Resource Job Units
	Resources





	Template Unit
	Template-Specific Fields

	Instantiation

	Basic example

	Real life example





	Exporter Unit
	File format and location

	Fields

	Example

	How to use exporter units?





	Manifest Entry Unit
	File format and location

	Fields

	Example

	Naming Manifest Entries

	Using Manifest Entries in Jobs

	Collecting Manifest Data

	Supplying External Manifest





	Packaging Meta Data Unit
	File format and location

	Fields

	Matching Packaging Meta-Data Units

	Example

	Using Packaging Meta-Data in Debian





	Plainbox RFC822 Specification
	Backus–Naur Form

	Quirk 1 – the magic dot

	Quirk 2 – the # comments









	Reporting Bugs

	The “Checkbox Stack”
	Architecture Diagram

	Component Descriptions





	Checkbox launchers tutorial
	External configuration files

	Launcher meta-information

	Providers section

	Test plan section

	Test selection section

	User Interface section

	Restart section

	Environment section

	Generating reports
	Exporter

	Transport

	Report





	Launcher examples





	QML-native Jobs Tutorial
	What is a qml-native job

	Software requirements
	Ubuntu-SDK installation

	Plainbox installation





	First qml-native job - Smoke test

	How to run jobs

	Multi-page tests
	Flat page hierarchy

	Using page stack





	Migrating QtQuick app to a qml-native test
	Plainbox job definition for the test

	Testing qml job in Checkbox Touch on Ubuntu device





	Confined Qml jobs





	Configuration values resolution order
	Invoking checkbox-cli (without launcher)

	Invoking plainbox

	Invoking launcher

	Apps using SessionAssistant or the plainbox internals directly





	Checkbox nested test plans tutorial
	Quick start

	Use cases
	How to use a base test plan?

	How to use a base test plan, but without running them last?

	How to change category or certification status of jobs coming from nested parts?

	How to include a nested part from another namespace?

	Is it possible to have multiple levels of nesting?

	How to use a base test plan except a few jobs?





	Known limitations





	Contributing to Snappy Testing with Checkbox
	Introduction
	Brief anatomy of a Checkbox test tool





	Snappy Provider
	Directory structure of the Provider

	Jobs

	Test plans





	Creating a test in five easy steps
	1. Configure your development environment

	2. Get the source

	3. Make your changes

	4. Check your test is valid

	5. Build the Checkbox snap package

	6. Run the tests

	7. Submit your modifications to the project









	Running Checkbox on Ubuntu Core
	Introduction

	Installation
	Installing Ubuntu Core on KVM

	Installing Checkbox Snap





	Running Checkbox

	Getting Results





	Creating a custom Checkbox application for Ubuntu Core testing
	Initialize the project

	Adding parts

	Create a device/project specific provider

	Create your new test plans (and jobs to go in them)

	Reusing existing provider(s)

	Create Checkbox Launchers configurations

	Create wrapper scripts

	Declare the launchers to be Apps that exist in your Snap












Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    

  

    
      
          
            
  
Introduction to Checkbox


Contents


	Introduction to Checkbox
	Getting Started

	Checkbox Command Line
	checkbox-cli startprovider

	checkbox-cli list

	checkbox-cli list-bootstrapped

	checkbox-cli launcher

	checkbox-cli run





	Looking Deeper
	Providers














Getting Started

You’ve got Checkbox installed, right? Installation

To run command line version of Checkbox, in your terminal run checkbox-cli.
You should be greeted with test plan selection screen:

[image: checkbox-cli enables you to select which test suite to run.]
With a test plan selected, you can choose the individual tests to run:

[image: checkbox-cli enables you to select or de-select specific tests.]
When the tests are run, the results are saved to files and the program
prompts to submit them to Launchpad.




Checkbox Command Line

When checkbox is run without any arguments, i.e.:

$ checkbox-cli





Interactive session is started with the default options.


checkbox-cli startprovider

startprovider subcommand creates a new provider, e.g.:

$ checkbox-cli startprovider 2016.com.acme:example





The command will also add example units to that provider, to create an empty
provider, use --empty option, e.g.:

$ checkbox-cli --empty startprovider 2016.com.acme:another-example








checkbox-cli list

list command prints out all units of the following type.

Currently there are following types you can list:



	job

	test plan

	category

	file

	template

	file

	manifest entry

	packaging meta-data

	exporter

	all-jobs (this special type list both, jobs and templates generating
jobs and has a different output formatting)






Example:

$ checkbox-cli list job

$ checkbox-cli list "test plan"

$ checkbox-cli list all-jobs






Note

For multi-word types like ‘test plan’ remember to escape the spaces in
between, or enquote the type name.



For the ‘all-jobs’ group, the output may be formatted to suit your needs. Use
--format option when listing all-jobs. The string will be interpolated
using properties of the listed jobs. Invoke
checkbox-cli list all-jobs --format ?
to see available properties. If the job definition doesn’t have the specified
property, <missing $property_name> will be printed in its place instead.
Additional property - unit_type is provided to the formatter when listing
all jobs. It is set to ‘job’ for normal jobs and ‘template job’ for jobs
generated with a template unit.

Example:

$ checkbox-cli list all-jobs -f "{id}\n\t{tr_summary}\n"

$ checkbox-cli list all-jobs -f "{id}\n"

$ checkbox-cli list all-jobs -f "{unit_type:12} | {id:50} | {summary}\n"






Note

\n and \t in the formatting string are interpreted and replaced
with new line and tab respectively.

When using own formatting, the jobs are not suffixed with a new line - you
have to explictly use it.






checkbox-cli list-bootstrapped

This special command list all the jobs that would be run on the device after
the boostrapping phase, i.e. after all the resource jobs are run, and all
of the templates were instatntiated.

It requires an argument being the test plan for which the bootstrapping should
execute.

Example:

$ checkbox-cli list-bootstrapped 2013.com.canonical.certification::default








checkbox-cli launcher

launcher command lets you customize checkbox experience.

See Checkbox launchers tutorial for more details.


Note

launcher is implied when invoking checkbox-cli with a file as the only
argument. e.g.:

$ checkbox-cli my-launcher





is equivalent to:

$ checkbox-cli launcher my-launcher










checkbox-cli run

run lets you run particular test plan or a set of jobs.

To just run one test plan, use the test plan’s id as an argument, e.g.:

$ checkbox-cli run 2013.com.canonical.certification::smoke





To run a hand-picked set of jobs, use regex pattern(s) as arguments. Jobs
with id matching the expresion will be run, e.g.:

$ checkbox-cli run 2016.com.acme:.*






Note

The command above runs all jobs which id begins with 2016.com.acme:
will be run



You can use multiple patterns to match against, e.g.:

$ checkbox-cli run .*true .*false






Note

The command above runs all jobs which id ends with ‘true’ or ‘false’








Looking Deeper


Providers

First, we installed some “provider” packages. Providers were designed to
encapsulate test descriptions and their related tools and data. Providers
are shipped in Debian packages, which allows us to express dependencies to
ensure required external packages are installed, and we can also separate
those dependencies; for instance, the provider used for server testing
doesn’t actually contain the server-specific test definitions (we try to
keep all the test definitions in the Checkbox provider), but it does depend
on all the packages needed for server testing. Most users will want the
resource and Checkbox providers which contain many premade tests, but this
organization allows shipping the tiny core and a fully customized provider
without extraneous dependencies.

A provider is described in a configuration file (stored in
/usr/share/plainbox-providers-1). This file describes where to find all
the files from the provider. This file is usually managed automatically
(more on this later). A provider can ship jobs, binaries, data and test plans.

A job or test is the smallest unit or description that Checkbox
knows about. It describes a single test (historically they’re called
jobs). The simplest possible job is:

id: a-job
plugin: manual
_description: Ensure your computer is turned on. Is the computer turned on?





Jobs are shipped in a provider’s jobs directory. This ultra-simple example
has three fields: id, plugin, and description. (A real job
should include a _summary field, too.) The id identifies the job
(of course) and the _description provides a plain-text description of
the job. In the case of this example, the description is shown to the user,
who must respond because the plugin type is manual. plugin
types include (but are not limited to):



	manual – A test that requires the user to perform some action and
report the results.

	shell – An automated test that requires no user interaction; the
test is passed or failed on the basis of the return value of the script
or command.

	resource – Job that identifies the resources that the system has.
(e.g. discrete GPU, Wi-Fi module). This information can later be used by
other jobs to control other jobs’ execution. (E.g. skip Wi-Fi tests if
there’s no Wi-Fi chip).

	user-interact – A test that asks the user to perform some action
before the test is performed. The test then passes or fails
automatically based on the output of the test. An example is
keys/media-control, which runs a tool to detect keypresses, asks the
user to press volume keys, and then exits automatically once the last
key has been pressed or the user clicks the skip button in the tool.

	user-interact-verify – This type of test is similar to the
user-interact test, except that the test’s output is displayed for
the user, who must then decide whether it has passed or failed. An
example of this would be the usb/disk_detect test, which asks the
user to insert a USB key, click the test button, and then verify
manually that the USB key was detected correctly.

	user-verify – A test that the user manually performs or runs
automatically and requires the user to verify the result as passed or
failed.  An example of this is the graphics maximum resolution test
which probes the system to determine the maximum supported resolution
and then asks the user to confirm that the resolution is correct.

	qml – A test with GUI defined in a QML file.
See QML-native Jobs Tutorial














          

      

      

    

  

    
      
          
            
  
Checkbox tutorials


Creating an empty provider

Plainbox Providers are bundles containing information how to run tests.

To create an empty provider run:

$ plainbox startprovider --empty 2016.com.example:myprovider





plainbox is the internal tool of checkbox. It’s used on rare occasions,
like creating a new provider.  --empty informs plainbox that you want to
start from scratch. 2016.com.example:myprovider is the name of the provider.
Providers use IQN naming, it helps in tracking down ownership of the provider.

Plainbox Jobs are the things that describe how tests are run. Those Jobs are
defined in .pxu files, in ‘units’ directory of the provider.

The provider we’ve just created doesn’t have that directory, let’s create it:

$ cd 2016.com.example\:myprovider
$ mkdir units








Adding a simple job to a provider

Jobs loosely follow RFC822 syntax. I.e. most content follow key:value
pattern.

Let’s add a simple job that runs a command.

Open any .pxu file in units directory of the provider
(if there isn’t any, just create one, like units.pxu).
And add following content:

id: my-first-job
flags: simple
command: mycommand





id is used for identification purposes
flags enables extra features. In the case of simple, it lets us not
specify all the typical fields - Checkbox will infer some values for us.
command specifies which command to run. Here it’s mycommand

In order for jobs to be visible in Checkbox they have to be included in some
test plan. Let’s add a test plan definition to the same .pxu file.:

unit: test plan
id: first-tp
name: My first test plan
include: my-first-job






Warning

Separated entities in the .pxu file has to be separated by at least one
empty line.






Running jobs from a newly created provider

In order for Checkbox to see the provider we have to install it.
To do so run:

$ sudo ./manage.py install





Now we’re ready to launch Checkbox! Start the command line version with:

$ checkbox-cli





Follow the instructions on the screen. The test will (probably) fail, because
of mycommand missing in your system. Let’s change the job definition to do
something meaningful instead. Open units.pxu, and change the line:

command: mycommand





to

command: [ `df -B 1G --output=avail $HOME |tail -n1` -gt 10 ]






Note

This command checks if there’s at least 10GB of free space in $HOME



This change won’t be available just yet, as we still have an old version of the
provider installed in the system. Let’s remove the previous version, and
install the new one.:

$ sudo rm -rf /usr/local/lib/plainbox-providers-1/2016.com.example\:myprovider/
$ sudo ./manage.py install





This sudo operations (hopefully) look dangerous to you. See next part to see
how to avoid that.




Developing provider without constantly reinstalling it

Instead of reinstalling the provider every time you change anything in it, you
can make Checkbox read it directly from the place you’re changing it in.:

$ ./manage.py develop





Because now Checkbox may see two instances of the same provider, make sure you
remove the previous one.


Note

./manage.py develop doesn’t require sudo, as it makes all the
references in user’s home.






Improving job definition

When you run Checkbox you see the job displayed as ‘my-first-job’ which is the
id of the job, which is not very human-friendly. This is because of the
simple flag. Let’s improve our Job definition. Open units.pxu and
replace the job definition with:

id: my-first-job
_summary: 10GB available in $HOME
_description:
    this test checks if there's at least 10gb of free space in user's home
    directory
plugin: shell
estimated_duration: 0.01
command: [ `df -B 1G --output=avail $HOME |tail -n1` -gt 10 ]





New stuff:

_summary: 10GB available in $HOME





Summary is shown in Checkbox screens where jobs are selected. It’s a
human-friendly identification of the job. It should should be short (50 - 70
chars), as it’s printed in one line. _ means at the beginning means
the field is translatable.

_purpose:
    this test checks if there's at least 10gb of free space in user's home
    directory





Purpose as the name suggest should describe the purpose of the test.

plugin: shell





Plugin tells Checkbox what kind of job is it. shell means it’s a automated
test that runs a command and uses it’s return code to determine jobs outcome.

estimated_duration: 0.01





Tells Checkbox how long the test is expected to run. This field is currently
informative only.







          

      

      

    

  

    
      
          
            
  
Checkbox Unit Types

Checkbox execution is governed by Units.

All units follow Plainbox RFC822 Specification.



	Job Unit
	File format and location

	Job Fields





	Test Plan Unit
	Test Plan Fields

	Examples





	Category Unit
	Category Fields





	Resource Job Units
	Resources





	Template Unit
	Template-Specific Fields

	Instantiation

	Basic example

	Real life example





	Exporter Unit
	File format and location

	Fields

	Example

	How to use exporter units?





	Manifest Entry Unit
	File format and location

	Fields

	Example

	Naming Manifest Entries

	Using Manifest Entries in Jobs

	Collecting Manifest Data

	Supplying External Manifest





	Packaging Meta Data Unit
	File format and location

	Fields

	Matching Packaging Meta-Data Units

	Example

	Using Packaging Meta-Data in Debian





	Plainbox RFC822 Specification
	Backus–Naur Form

	Quirk 1 – the magic dot

	Quirk 2 – the # comments













          

      

      

    

  

    
      
          
            
  
Job Unit

A job unit is a smallest unit of testing that can be performed by Checkbox.
All jobs have an unique name. There are many types of jobs, some are fully
automated others are fully manual. Some jobs are only an implementation detail
and a part of the internal architecture of Checkbox.


File format and location

Jobs are expressed as sections in text files that conform somewhat to the
rfc822 specification format. Our variant of the format is described in
rfc822. Each record defines a single job.




Job Fields

Following fields may be used by the job unit:


	id:

	(mandatory) - A name for the job. Should be unique, an error will
be generated if there are duplicates. Should contain characters in
[a-z0-9/-].
This field used to be called name. That name is now deprecated. For
backwards compatibility it is still recognized and used if id is
missing.

	summary:

	(mandatory) - A human readable name for the job. This value is available
for translation into other languages. It is used when listing jobs. It must
be one line long, ideally it should be short (50-70 characters max).

	plugin:

	(mandatory) - For historical reasons it’s called “plugin” but it’s
better thought of as describing the “type” of job. The allowed types
are:






	manual:	jobs that require the user to perform an action and then
decide on the test’s outcome.


	shell:	jobs that run without user intervention and
automatically set the test’s outcome.


	user-interact:	jobs that require the user to perform an
interaction, after which the outcome is automatically set.


	user-interact-verify:

	 	jobs that require the user to perform an
interaction, run a command after which the user is asked to decide on the
test’s outcome. This is essentially a manual job with a command.


	attachment:	jobs whose command output will be attached to the
test report or submission.


	resource:	A job whose command output results in a set of rfc822
records, containing key/value pairs, and that can be used in other
jobs’ requires expressions.


	qml:	A test with GUI defined in a QML file.










	requires:

	(optional). If specified, the job will only run if the conditions
expressed in this field are met.

Conditions are of the form <resource>.<key> <comparison-operator>
'value' (and|or) ... . Comparison operators can be ==, != and in.
Values to compare to can be scalars or (in the case of the in
operator) arrays or tuples. The not in operator is explicitly
unsupported.

Requirements can be logically chained with or and
and operators. They can also be placed in multiple lines,
respecting the rfc822 multi-line syntax, in which case all
requirements must be met for the job to run ( and ed).



	depends:

	(optional). If specified, the job will only run if all the listed
jobs have run and passed. Multiple job names, separated by spaces,
can be specified.

	after:

	(optional). If specified, the job will only run if all the listed jobs have
run (regardless of the outcome). Multiple job names, separated by spaces,
can be specified.

This feature is available since plainbox 0.24.



	command:

	(optional). A command can be provided, to be executed under specific
circumstances. For manual, user-interact and user-verify
jobs, the command will be executed when the user presses a “test”
button present in the user interface. For shell jobs, the
command will be executed unconditionally as soon as the job is
started. In both cases the exit code from the command (0 for
success, !0 for failure) will be used to set the test’s outcome. For
manual, user-interact and user-verify jobs, the user can
override the command’s outcome.  The command will be run using the
default system shell. If a specific shell is needed it should be
instantiated in the command. A multi-line command or shell script
can be used with the usual multi-line syntax.

Note that a shell job without a command will do nothing.



	purpose:

	(optional). Purpose field is used in tests requiring human interaction as
an information about what a given test is supposed to do. User interfaces
should display content of this field prior to test execution. This field
may be omitted if the summary field is supplied.
Note that this field is applicable only for human interaction jobs.

	steps:

	(optional). Steps field depicts actions that user should perform as a part
of job execution. User interfaces should display the content of this field
upon starting the test.
Note that this field is applicable only for jobs requiring the user to
perform some actions.

	verification:

	(optional). Verification field is used to inform the user how they can
resolve a given job outcome.
Note that this field is applicable only for jobs the result of which is
determined by the user.

	user:

	(optional). If specified, the job will be run as the user specified
here. This is most commonly used to run jobs as the superuser
(root).

	environ:

	(optional). If specified, the listed environment variables
(separated by spaces) will be taken from the invoking environment
(i.e. the one Checkbox is run under) and set to that value on the
job execution environment (i.e.  the one the job will run under).
Note that only the variable names should be listed, not the
values, which will be taken from the existing environment. This
only makes sense for jobs that also have the user attribute.
This key provides a mechanism to account for security policies in
sudo and pkexec, which provide a sanitized execution
environment, with the downside that useful configuration specified
in environment variables may be lost in the process.




	estimated_duration:

	(optional) This field contains metadata about how long the job is
expected to run for, as a positive float value indicating
the estimated job duration in seconds.

Since plainbox version 0.24 this field can be expressed in two formats. The
old format, a floating point number of seconds is somewhat difficult to
read for larger values. To avoid mistakes test designers can use the second
format with separate sections for number of hours, minutes and seconds. The
format, as regular expression, is (\d+h)?[: ]*(\d+m?)[: ]*(\d+s)?. The
regular expression expresses an optional number of hours, followed by the
h character, followed by any number of spaces or : characters,
followed by an optional number of minutes, followed by the m character,
again followed by any number of spaces or : characters, followed by the
number of seconds, ultimately followed by the s character.

The values can no longer be fractional (you cannot say 2.5m you need to
say 2m 30s). We feel that sub-second granularity does is too
unpredictable to be useful so that will not be supported in the future.



	flags:

	(optional) This fields contains list of flags separated by spaces or
commas that might induce plainbox to run the job in particular way.
Currently, following flags are inspected by plainbox:


	preserve-locale:

	This flag makes plainbox carry locale settings to the job’s command. If
this flag is not set, plainbox will neuter locale settings.  Attach
this flag to all job definitions with commands that use translations .

	win32:

	This flag makes plainbox run jobs’ commands in windows-specific manner.
Attach this flag to jobs that are run on Windows OS.

	noreturn:

	This flag makes plainbox suspend execution after job’s command is run.
This prevents scenario where plainbox continued to operate (writing
session data to disk and so on), while other process kills it (leaving
plainbox session in unwanted/undefined state).
Attach this flag to jobs that cause killing of plainbox process during
their operation. E.g. run shutdown, reboot, etc.









	explicit-fail:

	Use this flag to make entering comment mandatory, when the user
manually fails the job.








	has-leftovers:

	This flag makes plainbox silently ignore (and not log) any files left
over by the execution of the command associated with a job. This flag
is useful for jobs that don’t bother with maintenance of temporary
directories and just want to rely on the one already created by
plainbox.








	simple:

	This flag makes plainbox disable certain validation advice and have
some sesible defaults for automated test cases.  This simiplification
is meant to cut the boiler plate on jobs that are closer to unit tests
than elaborate manual interactions.

In practice the following changes are in effect when this flag is set:



	the plugin field defaults to shell

	the description field is entirely optional

	the estimated_duration field is entirely optional

	the preserve-locale flag is entirely optional






A minimal job using the simple flag looks as follows:

id: foo
command: echo "Jobs are simple!"
flags: simple














	preserve-cwd:

	This flag makes plainbox run the job command in the current working
directory without creating a temp folder (and running the command from
this temp folder). Sometimes needed on snappy
(See http://pad.lv/1618197)







also-after-suspend: See siblings below.



also-after-suspend-auto: See siblings below.

Additional flags may be present in job definition; they are ignored.





	siblings:

	(optional) This field creates copies of the current job definition
but using a dictionary of overridden fields. The intend is to reduce the
amount of job definitions when only a few changes are required to make a
job. For example we often run the same test after suspend. In that case
only a new id, a new job dependency (e.g suspend/advanced) and an updated
summary are required.
Other possible uses of this feature are tests creation for a fixed/limited
list of external ports (USB port 1, USB port 2). Useful when such
enumerations cannot be computed from a resource job.
This field is interpreted as a JSON blob, an array of dictionaries.

A minimal job using the siblings field looks as follows:

id: foo
_summary: foo foo foo
command: echo "Hello world"
flags: simple
_siblings: [
    { "id": "foo-after-suspend",
      "_summary": "foo foo foo after suspend",
      "depends": suspend/advanced}
]





Another example creating two more jobs in order to cover a total of 3
external USB ports:

id: usb_test_port1
_summary: usb stress test_(port 1)
command: usb_stress.py
flags: simple
_siblings: [
    { "id": "usb_test_port2",
      "_summary": "usb stress test_(port 2)"},
    { "id": "usb_test_port3",
      "_summary": "usb stress test_(port 3)"},
]





For convenience two flags can be set (also-after-suspend and
also-after-suspend-auto) to create siblings with predefined settings to
add “after suspend” jobs.

Given the base job:

id:foo
_summary: bar
flags: also-after-suspend also-after-suspend-auto
[...]





The also-after-suspend flag is a shortcut to create the following job:

id: after-suspend-foo
_summary: bar after suspend (S3)
depends: 2013.com.canonical.certification::suspend/suspend_advanced





also-after-suspend-auto is a shortcut to create the following job:

id: after-suspend-auto-foo
_summary: bar after suspend (S3)
depends: 2013.com.canonical.certification::suspend/suspend_advanced_auto










Warning

The curly braces used in this field have to be escaped when used in a
template job (python format, Jinja2 templates do not have this issue).
The syntax for templates is:

_siblings: [
    {{ "id": "bar-after-suspend_{interface}",
      "_summary": "bar after suspend",
      "depends": suspend/advanced}}
]








	imports:

	(optional) This field lists all the resource jobs that will have to be
imported from other namespaces. This enables jobs to use resources from
other namespaces.
You can use the “as ...” syntax to import jobs that have dashes, slashes or
other characters that would make them invalid as identifiers and give them
a correct identifier name. E.g.:

imports: from 2013.com.canonical.certification import cpuinfo
requires: 'armhf' in cpuinfo.platform

imports: from 2013.com.canonical.certification import cpu-01-info as cpu01
requires: 'avx2' in cpu01.other





The syntax of each imports line is:

IMPORT_STMT :: "from" <NAMESPACE> "import" <PARTIAL_ID>
               | "from" <NAMESPACE> "import" <PARTIAL_ID> AS <IDENTIFIER>















          

      

      

    

  

    
      
          
            
  
Test Plan Unit

The test plan unit is a facility that describes a sequence of job definitions
that should be executed together.

Jobs definitions are _selected_ by either listing their identifier or a regular
expression that matches their identifier. Selected jobs are executed in the
sequence they appear in the list, unless they need to be reordered to satisfy
dependencies which always take priority.

Test plans can contain additional meta-data which can be used in a graphical
user interface. You can assign a translatable name and
description to each test plan.

Test plans are also typical units so they can be defined with the familiar
RFC822-like syntax that is also used for job definitions. They can also be
multiple test plan definitions per file, just like with all the other units,
including job definitions.


Test Plan Fields

The following fields can be used in a test plan. Note that not all fields
need to be used or even should be used. Please remember that Checkbox needs to
maintain backwards compatibility so some of the test plans it defines may have
non-typical constructs required to ensure proper behavior. You don’t have to
copy such constructs when working on a new test plan from scratch


	id:

	Each test plan needs to have a unique identifier. This is exactly the same
as with other units that have an identifier (like job definitions
and categories).

This field is not used for display purposes but you may need to refer
to it on command line so keeping it descriptive is useful



	name:

	A human-readable name of the test plan. The name should be relatively short
as it may be used to display a list of test plans to the test operator.

Remember that the user or the test operator may not always be familiar with
the scope of testing that you are focusing on. Also consider that multiple
test providers may be always installed at the same time. The translated
version of the name (and icon, see below) is the only thing that needs
to allow the test operator to  pick the right test plan.


	Please use short and concrete names like:

	
	“Storage Device Certification Tests”

	“Ubuntu Core Application’s Clock Acceptance Tests”

	“Default Ubuntu Hardware Certification Tests”.







The field has a soft limit of eighty characters. It cannot have multiple
lines. This field should be marked as translatable by prepending the
underscore character (_) in front. This field is mandatory.



	description:

	A human-readable description of this test plan. Here you can include as
many or few details as you’d like. Some applications may offer a way
of viewing this data. In general it is recommended to include a description
of what is being tested so that users can make an informed decision but
please in mind that the name field alone must be sufficient to
discriminate between distinct test plans so you don’t have to duplicate
that information in the description.

If your tests will require any special set-up (procuring external hardware,
setting some devices or software in special test mode) it is recommended
to include this information here.

The field has no size limit. It can contain newline characters. This field
should be marked as translatable by prepending the underscore character
(_) in front. This field is optional.



	include:

	A multi-line list of job identifiers or patterns matching such identifiers
that should be included for execution.

This is the most important field in any test plan. It basically decides
on which job definitions are selected by (included by) the test plan.
Separate entries need to be placed on separate lines. White space does not
separate entries as the id field may (sic!) actually include spaces.

You have two options for selecting tests:



	You can simply list the identifier (either partial or fully qualified)
of the job you want to include in the test plan directly. This is very
common and most test plans used by Checkbox actually look like that.

	You can use regular expressions to select many tests at the same time.
This is the only way to select generated jobs (created either by
template units. Please remember that the dot character has a special
meaning so unless you actually want to match any character escape the
dot with the backslash character (\).






Regardless of if you use patterns or literal job identifiers you can use
their fully qualified name (the one that includes the namespace they reside
in) or an abbreviated form. The abbreviated form is applicable for job
definitions that reside in the same namespace (but not necessarily the same
provider) as the provider that is defining the test plan.

Plainbox will catch incorrect references to unknown jobs so you should
be relatively safe. Have a look at the examples section below for examples
on how you can refer to jobs from other providers (you simply use their
fully qualified name for that)



	mandatory_include:

	A multi-line list of job identifiers or patterns matching such identifiers
that should always be executed.

This optional field can be used to specify the jobs that should always run.
This is particularly useful for specifying jobs that gather vital
info about the tested system, as it renders imposible to generate a report
with no information about system under test.

For example, session results meant to be sent to the Ubuntu certification
website must include the special job: miscellanea/submission-resources

Example:



	mandatory_include:

	miscellanea/submission-resources






Note that mandatory jobs will always be run first (along with their
dependant jobs)



	bootstrap_include:

	A multi-line list of job identifiers that should be run first, before the
main body of testing begins. The job that should be included in the
bootstrapping sections are the ones generating or helping to generate other
jobs.

Example:



	bootstrap_include:

	graphics/generator_driver_version






Note that each entry in the bootstrap_include section must be a valid job
identifier and cannot be a regular expression pattern.
Also note that only resource jobs are allowed in this section.



	exclude:

	A multi-line list of job identifiers or patterns matching such identifiers
that should be excluded from execution.

This optional field can be used to prevent some jobs from being selected
for execution. It follows the similarly named  -x command line option
to the plainbox run command.

This field may be used when a general (broad) selection is somehow made
by the include field and it must be trimmed down (for example, to
prevent a specific dangerous job from running). It has the same syntax
as the include.

When a job is both included and excluded, exclusion always takes priority.



	category-overrides:

	A multi-line list of category override statements.

This optional field can be used to alter the natural job definition
category association. Currently Plainbox allows each job definition to
associate itself with at most one category (see plainbox-category-units(7)
and plainbox-job-units(7) for details). This is sub-optimal as some tests
can be easily assigned equally well to two categories at the same time.

For that reason, it may be necessary, in a particular test plan, to
override the natural category association with one that more correctly
reflects the purpose of a specific job definition in the context of a
specific test plan.

For example let’s consider a job definition that tests if a specific piece
of hardware works correctly after a suspend-resume cycle. Let’s assume that
the job definition  has a natural association with the category describing
such hardware devices. In one test plan, this test will be associated
with the hardware-specific category (using the natural association). In
a special suspend-resume test plan the same job definition can
be associated with a special suspend-resume category.

The actual rules as to when to use category overrides and how to assign
a natural category to a specific test is not documented here. We believe
that each project should come up with a workflow and semantics that best
match its users.

The syntax of this field is a list of statements defined on separate lines.
Each override statement has the following form:

apply CATEGORY-IDENTIFIER to JOB-DEFINITION-PATTERN





Both ‘apply’ and ‘to’ are literal strings. CATEGORY-IDENTIFIER is
the identifier of a category unit. The JOB-DEFINITION-PATTERN has the
same syntax as the include field does. That is, it can be either
a simple string or a regular expression that is being compared to
identifiers of all the known job definitions. The pattern can be
either partially or fully qualified. That is, it may or may not
include the namespace component of the job definition identifier.

Overrides are applied in order and the last applied override is the
effective override in a given test plan. For example, given the
following two overrides:

apply cat-1 to .*
apply cat-2 to foo





The job definition with the partial identifier foo will be associated
with the cat-2 category.






	estimated_duration:

	An approximate time to execute this test plan, in seconds.

Since plainbox version 0.24 this field can be expressed in two formats. The
old format, a floating point number of seconds is somewhat difficult to
read for larger values. To avoid mistakes test designers can use the second
format with separate sections for number of hours, minutes and seconds. The
format, as regular expression, is (\d+h)?[: ]*(\d+m?)[: ]*(\d+s)?. The
regular expression expresses an optional number of hours, followed by the
h character, followed by any number of spaces or : characters,
followed by an optional number of minutes, followed by the m character,
again followed by any number of spaces or : characters, followed by the
number of seconds, ultimately followed by the s character.

The values can no longer be fractional (you cannot say 2.5m you need to
say 2m 30s). We feel that sub-second granularity does is too
unpredictable to be useful so that will not be supported in the future.

This field is optional. If it is missing it is automatically computed by
the identical field that may be specified on particular job definitions.

Since sometimes it is easier to think in terms of test plans (they are
typically executed more often than a specific job definition) this estimate
may be more accurate as it doesn’t include the accumulated sum of
mis-estimates from all of the job definitions selected by a particular test
plan.








Examples

A simple test plan that selects several jobs:

id: foo-bar-and-froz
_name: Tests Foo, Bar and Froz
_description:
    This example test plan selects the following three jobs:
        - Foo
        - Bar
        - Froz
include:
    foo
    bar
    froz





A test plan that uses jobs from another provider’s namespace in addition
to some of its own definitions:

id: extended-tests
_name: Extended Storage Tests (By Corp Inc.)
_description:
    This test plan runs an extended set of storage tests, customized
    by the Corp Inc. corporation. In addition to the standard Ubuntu
    set of storage tests, this test plan includes the following tests::

    - Multipath I/O Tests
    - Degraded Array Recovery Tests
include:
    2013.com.canonical.certification:disk/.*
    multipath-io
    degrade-array-recovery





A test plan that generates jobs using bootstrap_include section:

unit: test plan
id: test-plan-with-bootstrapping
_name: Tests with a bootstrapping stage
_description:
    This test plan uses bootstrapping_include field to generate additional
    jobs depending on the output of the generator job.
include: .*
bootstrap_include:
    generator

unit: job
id: generator
plugin: resource
_description: Job that generates Foo and Bar resources
command:
 echo "my_resource: Foo"
 echo
 echo "my_resource: Bar"

unit: template
template-unit: job
template-resource: generator
plugin: shell
estimated_duration: 1
id: generated_job_{my_resource}
command: echo {my_resource}
_description: Job instantiated from template that echoes {my_resource}





A test plan that marks some jobs as mandatory:

unit: test plan
id: test-plan-with-mandatory-jobs
_name: Test plan with mandatory jobs
_description:
    This test plan runs some jobs regardless of user selection.
include:
    Foo
mandatory_include:
    Bar

unit: job
id: Foo
_name: Foo job
_description: Job that might be deselected by the user
plugin: shell
command: echo Foo job

unit: job
id: Bar
_name: Bar job (mandatory)
_description: Job that should *always* run
plugin: shell
command: echo Bar job











          

      

      

    

  

    
      
          
            
  
Category Unit

The category unit is a normalized implementation of a “test category” concept.
Using category units one can define logical groups of tests that deal with some
specific testing area (for example, suspend-resume or USB support).

Job definitions can be associated with at most one category. Categories can
be used by particular applications to facilitate test selection.


Category Fields

There are two fields that are used by the category unit:


	id:

	This field defines the partial identifier of the category. It is similar
to the id field on the job definition units.

This field is mandatory.



	name:

	This field defines a human readable name of the category. It may be used
in application user interfaces for displaying a group of tests.

This field is translatable.
This field is mandatory.






Rationale

The unit is a separate entity so that it can be shipped separately of job
definitions and so that it can gain a localizable name that can still be
referred to uniquely by any job definition.

In the future it is likely that the unit will be extended with additional
fields, for example to define an icon.




Note

Association between job definitions and categories can be overridden by
a particular test plan. Please refer to the test plan unit documentation for
details.




Examples

Given the following definition of a category unit:

unit: category
id: audio
_name: Audio tests





And the following definition of a job unit:

id: audio/speaker-headphone-plug-detection
category_id: audio
plugin: manual
_description: Plug in your headphones and ensure the system detected them





The job definition will be a part of the audio category.









          

      

      

    

  

    
      
          
            
  
Resource Job Units


Resources

Resources are a mechanism that allows to constrain certain job [http://plainbox.readthedocs.io/en/latest/glossary.html#term-job] to
execute only on devices with appropriate hardware or software dependencies.
This mechanism allows some types of jobs to publish resource objects to an
abstract namespace and to a way to evaluate a resource program to determine if
a job can be started.

Resources also serve as a ‘generator’ for template units.
See Template Unit


Resource Jobs

Resource Jobs are jobs with a plugin set to resource:

plugin: resource





Command that they run should print resource information in a predefined manner.
This command may be considered a Resource Program




Resource programs

Resource programs are multi-line statements that can be embedded in job
definitions. By far, the most common use case is to check if a required package
is installed, and thus, the job can use it as a part of a test. A check like
this looks like this:

package.name == "fwts"





This resource program codifies that the job needs the fwts package to run.
There is a companion job with the same name that interrogates the local package
database and publishes a set of resource objects. Each such object is a
collection of arbitrary key-value pairs. The package job simply publishes
the name and version of each installed package but the mechanism is
generic and applies to all resources.

As stated, resource programs can be multi-line, a real world example of that is
presented below:

device.category == 'CDROM'
optical_drive.cd == 'writable'





This example is much like the one above, referring to some resources, here
coming from jobs device and optical_drive. What is important to point
out is that, as a rule of a thumb, multi line programs have an implicit and
operator between each line. This program would only evaluate to True if there
is a writable CD-ROM available.

Each resource program is composed of resource expressions. Each line maps
directly onto one expression so the example program above uses two resource
expressions.




Resource expressions

Resource expressions are evaluated like normal python programs. They use all of
the same syntax, semantics and behavior. None of the operators are overridden
to do anything unexpected. The evaluator tries to follow the principle of least
surprise but this is not always possible.

Resource expressions cannot execute arbitrary python code. In general almost
everything is disallowed, except as noted below:


	Expressions can use any literals (strings, numbers, True, False, lists and tuples)

	Expressions can use boolean operators (and, or, not)

	Expressions can use all comparison operators

	Expressions can use all binary and unary operators

	Expressions can use the set membership operator (in)

	Expressions can use read-only attribute access



Anything else is rejected as an invalid resource expression.

In addition to that, each resource expression must use at least one variable,
which must be used like an object with attributes. The name of that variable
must correspond to the name of the job that generates resources. You can use
the imports field (at a job definition level) to rename a resource job to
be compatible with the identifier syntax. It can also be used to refer to
resources from another namespace.

In the examples elsewhere in this page the  package resources are generated
by the package job. Plainbox uses this to know which resources to try but
also to implicitly to express dependencies so that the package job does not
have to be explicitly selected and marked for execution prior to the job that
in fact depends on it. This is all done automatically.




Example

The job definition below generates a RTC resource:

id: rtc
estimated_duration: 0.02
plugin: resource
command:
  if [ -e /sys/class/rtc ]
  then
      echo "state: supported"
  else
      echo "state: unsupported"
  fi
_description: Creates resource info for RTC





Next let’s define a Job that uses that resource.

plugin: shell
category_id: 2013.com.canonical.plainbox::power-management
id: power-management/rtc
requires:
  rtc.state == 'supported'
  package.name == 'util-linux'
  cpuinfo.other != 'emulated by qemu'
user: root
command: hwclock -r
estimated_duration: 0.02
_summary: Test that RTC functions properly (if present)
_description:
 Verify that the Real-time clock (RTC) device functions properly, if present.





Now the power-management/rtc job will only be run on systems where
/sys/class/rtc directory exists (which is true for systems supporting RTC)




Evaluation


	First Plainbox looks at the resource program and splits it into lines. Each
non-empty line is parsed and converted to a resource expression.

	unexpected Each resource expression is repeatedly evaluated, once for
each resource from the group determined by the variable name. All exceptions
are silently ignored and treated as if the iteration had evaluated to False.
The whole resource expression evaluates to True if any of the iterations
evaluated to True. In other words, there is an implicit any() around
each resource expression, iterating over all resources.

	unexpected The resource program evaluates to True only if all
resource expressions evaluated to True. In other words, there is an
implicit and between each line.






Limitations

The design of resource programs has the following shortcomings. The list is
non-exhaustive, it only contains issues that we came across found not to work
in practice.


Joins are not optimized

Starting with plainbox 0.24, a resource expression can use more than one
resource object (resource job) at the same time. This allows the use of joins
as the whole expression is evaluated over the cartesian product of all the
resource records. This operation is not optimized, you can think of it as a
JOIN that is performed on a database without any indices.

Let’s look at a practical example:

package.name == desired_package.name





Here, two resource jobs would run. The classic package resource (that
produces, typically, a great number of resource records, one for each package
installed on the system) and a hypothetical desired_package resource (for
this example let’s pretend that it is a simple constant resource that just
contains one object). Here, this operation is not any worse than before because
size(desired_package) * size(package) is not any larger. If, however,
desired_package was on the same order as package (approximately a thousand
resource objects). Then the computational cost of evaluating that expression
would be quadratic.

In general, the cost, assuming all resources have the same order, is
exponential with the number of distinct resource jobs referenced by the
expression.




Exactly one resource bound to a variable at once

It’s not possible to refer to two different resources, from the same resource
group, in one resource expression. In other terms, the variable always points
to one object, it is not a collection of objects.

For example, let’s consider this program:

package.name == 'xorg' and package.name == 'procps'





Seemingly the intent was to ensure that both xorg and procps are
installed. The reason why this does not work is that at each iteration of the
the expression evaluator, the name package refers to exactly one resource
object. In other words, that expression is equivalent to this one:

A == True and A == False





This type of error is not captured by our limited semantic analyzer. It will
silently evaluate to False and inhibit the job from being stated.

To work around this, split the expression to two consecutive lines. As stated
in rule 3 in the list above, there is an implicit and operator between all
expressions. A working example that expresses the same intent looks like this:

package.name == 'xorg'
package.name == 'procps'








Operator != is useless

This is strange at first but quickly becomes obvious once you recall rule 2
from the list above. That rule states that the expression is evaluated
repeatedly for each resource from a particular group and that any True
iteration marks the whole expression as True).

Let’s look at a real-world example:

xinput.device_class == 'XITouchClass' and xinput.touch_mode != 'dependent'





So seemingly, the intent here was to have at least xinput resource with a
device_class attribute equal to XITouchClass that has touch_mode
attribute equal to anything but dependent.

Now let’s assume that we have exactly two resources in the xinput group:

device_class: XITouchClass
touch_mode: dependant

device_class: XITouchClass
touch_mode: something else





Now, this expression will evaluate to True, as the second resource fulfils
the requirements. Is this what the test designer had expected? That’s hard to
say. The problem here is that this expression can be understood as at least
one resource isn’t something or all resources weren’t something. Both
are equally valid desires and, depending on how the test is implemented, may or
many not work correctly in practice.

Currently there is no workaround. We are considering adding a new syntax that
would allow to specify this explicitly. The proposal is documented below as
“implicit any(), explicit all()”




Everything is a string

Resource programs are regular python programs evaluated in unusual ways but
all of the variables that are exposed through the resource object are strings.

This has considerable impact on comparison, unless you are comparing to a
string the comparison will always silently fail as python has dynamic but
strict, not loose types (there is no implicit type conversion). To alleviate
this problem several type names / conversion functions are allowed in
requirement programs. Those are:


	int [https://docs.python.org/2/library/functions.html#int], to convert to integer numbers

	float [https://docs.python.org/2/library/functions.html#float], to convert to floating point numbers

	bool [https://docs.python.org/2/library/functions.html#bool], to convert to a boolean context













          

      

      

    

  

    
      
          
            
  
Template Unit

The template unit is a variant of Plainbox unit types. A template is a skeleton
for defining additional units, typically job definitions. A template is defined
as a typical RFC822-like Plainbox unit (like a typical job definition) with the
exception that all the fields starting with the string template- are
reserved for the template itself while all the other fields are a definition of
all the eventual instances of the template.


Template-Specific Fields

There are four fields that are specific to the template unit:


	template-unit:

	Name of the unit type this template will generate. By default job
definition units are generated (as if the field was specified with the
value of job) eventually but other values may be used as well.

This field is optional.



	template-resource:

	Name of the resource job (if it is a compatible resource identifier) to use
to parametrize the template. This must either be a name of a resource job
available in the namespace the template unit belongs to or a valid
resource identifier matching the definition in the template-imports
field.

This field is mandatory.



	template-imports:

	A resource import statement. It can be used to refer to arbitrary resource
job by its full identifier and (optionally) give it a short variable name.

The syntax of each imports line is:

IMPORT_STMT ::  "from" <NAMESPACE> "import" <PARTIAL_ID>
              | "from" <NAMESPACE> "import" <PARTIAL_ID>
                 AS <IDENTIFIER>





The short syntax exposes PARTIAL_ID as the variable name available
within all the fields defined within the template unit.  If it is not a
valid variable name then the second form must be used.

This field is sometimes optional. It becomes mandatory when the resource
job definition is from another provider namespace or when it is not a valid
resource identifier and needs to be aliased.



	template-filter:

	A resource program that limits the set of records from which template
instances will be made. The syntax of this field is the same as the syntax
of typical job definition unit’s requires field, that is, it is a
python expression.

When defined, the expression is evaluated once for each resource object and
if it evaluates successfully to a True value then that particular resource
object is used to instantiate a new unit.

This field is optional.








Instantiation

When a template is instantiated, a single record object is used to fill in the
parametric values to all the applicable fields. Each field is formatted using
the python formatting language. Within each field the record is exposed as the
variable named by the template_resource field. Record data is exposed as
attributes of that object.

The special parameter __index__ can be used to iterate over the devices
matching the template-filter field.


Examples






Basic example

The following example contains a simplified template that instantiates to a
simple storage test. The test is only instantiated for devices that are
considered physical. In this example we don’t want to spam the user with a
long list of loopback devices. This is implemented by exposing that data in the
resource job itself:

id: device
plugin: resource
command:
    echo 'path: /dev/sda'
    echo 'has_media: yes'
    echo 'physical: yes'
    echo
    echo 'path: /dev/cdrom'
    echo 'has_media: no'
    echo 'physical: yes'
    echo
    echo 'path: /dev/loop0'
    echo 'has_media: yes'
    echo 'physical: no'





The template defines a test-storage-XXX test where XXX is replaced by
the path of the device. Only devices which are physical according to some
definition are considered for testing. This means that the record related to
/dev/loop0 will be ignored and will not instantiate a test job for that
device. This feature can be coupled with the existing resource requirement to
let the user know that we did see their CD-ROM device but it was not tested as
there was no inserted media at the time:

unit: template
template-resource: device
template-filter: device.physical == 'yes'
requires: device.has_media == 'yes'
id: test-storage-{path}
plugin: shell
command: perform-testing-on --device {path}








Real life example

Here is a real life example of a template unit that generates a job for each
hard drive available on the system:

unit: template
template-resource: device
template-filter: device.category == 'DISK'
plugin: shell
category_id: 2013.com.canonical.plainbox::disk
id: disk/stats_{name}
requires:
 device.path == "{path}"
 block_device.{name}_state != 'removable'
user: root
command: disk_stats_test {name}
_description: This test checks {name} disk stats, generates some activity and rechecks stats to verify they've changed. It also verifies that disks appear in the various files they're supposed to.





The template-resource used here (device) refers to a resource job using
the udev_resource script to get information about the system. The
udev_resource script returns a list of items with attributes such as
path and name, so we can use these directly in our template.







          

      

      

    

  

    
      
          
            
  
Exporter Unit

The purpose of exporter units is to provide an easy way to customize the
plainbox reports by delagating the customization bits to providers.

Each exporter unit expresses a binding between code (the entry point) and data.
Data can be new options, different Jinja2 templates and/or new paths to load
them.


File format and location

Exporter entry units are regular plainbox units and are contained and shipped
with plainbox providers. In other words, they are just the same as job and test
plan units, for example.




Fields

Following fields may be used by an exporter unit.


	id:

	(mandatory) - Unique identifier of the exporter. This field is used to look
up and store data so please keep it stable across the lifetime of your
provider.

	summary:

	(optional) - A human readable name for the exporter. This value is
available for translation into other languages. It is used when listing
exporters. It must be one line long, ideally it should be short (50-70
characters max).

	entry_point:

	(mandatory) - This is a key for a pkg_resources entry point from the
plainbox.exporters namespace.
Allowed values are: jinja2, text, xlsx, json and rfc822.

	file_extension:

	(mandatory) - Filename extension to use when the exporter stream is saved
to a file.

	options:

	(optional) - comma/space/semicolon separated list of options for this
exporter entry point. Only the following options are currently supported.


	text and rfc822:

	
	with-io-log

	squash-io-log

	flatten-io-log

	with-run-list

	with-job-list

	with-resource-map

	with-job-defs

	with-attachments

	with-comments

	with-job-via

	with-job-hash

	with-category-map

	with-certification-status





	json:

	Same as for text and additionally:


	machine-json





	xlsx:

	
	with-sys-info

	with-summary

	with-job-description

	with-text-attachments

	with-unit-categories





	jinja2:

	No options available





	data:

	(optional) - Extra data sent to the exporter code, to allow all kind of
data types, the data field only accept valid JSON. For exporters using the
jinja2 entry point, the template name and any additional paths to load
files from must be defined in this field. See examples below.






Example

This is an example exporter definition:

unit: exporter
id: my_html
_summary: Generate my own version of the HTML report
entry_point: jinja2
file_extension: html
options:
 with-foo
 with-bar
data: {
 "template": "my_template.html",
 "extra_paths": [
     "/usr/share/javascript/lib1/",
     "/usr/share/javascript/lib2/",
     "/usr/share/javascript/lib3/"]
 }





The provider shipping such unit can be as follow:

├── data
│   ├── my_template.css
│   └── my_template.html
├── units
    ├── my_test_plans.pxu
    └── exporters.pxu





Note that exporters.pxu is not strictly needed to store the exporter units, but
keeping them in a dedidated file is a good practice.




How to use exporter units?

In order to call an exporter unit from provider foo, you just need to use in in
the launcher.

Example of a launcher using custom exporter unit:

#!/usr/bin/env checkbox-cli

[launcher]
launcher_version = 1

[transport:local_file]
type = file
path = /tmp/submission.html

[exporter:my_html]
unit = 2013.com.foo.bar::my_html

[report:local_html]
transport = local_file
exporter = my_html





For more information about generating reports see Generating reports







          

      

      

    

  

    
      
          
            
  
Manifest Entry Unit

A manifest entry unit describes a single entry in a manifest that describes
the machine or device under test. The purpose of each entry is to define one
specific fact. Plainbox uses such units to create a manifest that associates
each entry with a value.

The values themselves can come from multiple sources, the simplest one is the
test operator who can provide an answer. In more complex cases a specialized
application might look up the type of the device using some identification
method (such as DMI data) from a server, thus removing the extra interaction
steps.


File format and location

Manifest entry units are regular plainbox units and are contained and shipped
with plainbox providers. In other words, they are just the same as job and test
plan units, for example.




Fields

Following fields may be used by a manifest entry unit.


	id:

	(mandatory) - Unique identifier of the entry. This field is used to look up
and store data so please keep it stable across the lifetime of your
provider.

	name:

	(mandatory) - A human readable name of the entry. This should read as in a
feature matrix of a device in a store (e.g., “802.11ac wireless
capability”, or “Thunderbolt support”, “Number of hard drive bays”). This
is not a sentence, don’t end it with a dot. Please capitalize the first
letter. The name is used in various listings so it should be kept
reasonably short.

The name is a translatable field so please prefix it with _ as in
_name: Example.



	value-type:

	(mandatory) - Type of value for this entry. Currently two values are
allowed: bool for a yes/no value and natural for any natural number
(negative numbers are rejected).

	value-units:

	(optional) - Units in which value is measured in. This is only used when
value-type is equal to natural. For example a “Screen size”
manifest entry could be measured in “inch” units.

	resource-key:

	(optional) - Name of the resource key used to store the manifest value when
representing the manifest as a resource record. This field defaults to the
so-called partial id which is just the id: field as spelled in the
unit definition file (so without the name space of the provider)






Example

This is an example manifest entry definition:

unit: manifest entry
id: has_thunderbolt
_name: Thunderbolt Support
value-type: bool








Naming Manifest Entries

To keep the code consistent there’s one naming scheme that should be followed.
Entries for boolean values must use the has_XXX naming scheme. This will
allow us to avoid issues later on where multiple people develop manifest
entries and it’s all a bit weird what them mean has_thunderbolt or
thunderbolt_supported or tb or whatever we come up with. It’s a
convention, please stick to it.




Using Manifest Entries in Jobs

Manifest data can be used to decide if a given test is applicable for a given
device under test or not. When used as a resource they behave in a standard
way, like all other resources. The only special thing is the unique name-space
of the resource job as it is provided by plainbox itself. The name of the
resource job is: 2013.com.canonical.plainbox. In practice a simple job that
depends on data from the manifest can look like this:

unit: job
id: ...
plugin: ...
requires:
 manifest.has_thunderbolt == 'True' and manifest.ns == '2013.com.canonical.checkbox'
imports: from 2013.com.canonical.plainbox import manifest





Note that the job uses the manifest job from the
2013.com.canonical.plainbox name-space. It has to be imported using the
imports: field as it is in a different name-space than the one the example
unit is defined in (which is arbitrary). Having that resource it can then check
for the has_thunderbolt field manifest entry in the
2013.com.canonical.checkbox name-space. Note that the name-space of the
manifest job is not related to the manifest.ns value. Since any
provider can ship additional manifest entries and then all share the flat
name-space of resource attributes looking at the .ns attribute is a way to
uniquely identify a given manifest entry.




Collecting Manifest Data

To interactively collect manifest data from a user please include this job
somewhere early in your test plan:
2013.com.canonical.plainbox::collect-manifest.




Supplying External Manifest

The manifest file is stored in
$HOME/.local/share/plainbox/machine-manifest.json.
If the provisioning method ships a valid manifest file there it can be used for
fully automatic but manifest-based deployments.







          

      

      

    

  

    
      
          
            
  
Packaging Meta Data Unit

The packaging meta-data unit describes system-level dependencies of a provider
in a machine readable way. Dependencies can be specified separately for
different distributions. Dependencies can also be specified for a common base
distribution (e.g. for Debian rather than Ubuntu). The use of packaging
meta-data units can greatly simplify management of dependencies of binary
packages as it brings those decisions closer to the changes to the actual
provider and makes package management largely automatic.


File format and location

Packaging meta-data units are regular plainbox units and are contained and
shipped with plainbox providers. In other words, they are just the same as job
and test plan units, for example.




Fields

Following fields may be used by a manifest entry unit.


	os-id:

	(mandatory) - the identifier of the operating system this rule applies to.
This is the same value as the ID field in the file /etc/os-release.
Typical values include debian, ubuntu or fedora.

	os-version-id:

	(optional) - the identifier of the specific version of the operating system
this rule applies to. This is the same as the VERSION_ID field in the
file /etc/os-release. If this field is not present then the rule
applies to all versions of a given operating system.



The remaining fields are custom and depend on the packaging driver. The values
for Debian are:


	Depends:

	(optional) - a comma separated list of dependencies for the binary package.
The syntax is the same as in normal Debian control files (including package
version dependencies). This field can be split into multiple lines, for
readability, as newlines are discarded.

	Suggests:

	(optional) - same as Depends.

	Recommends:

	(optional) - same as Depends.






Matching Packaging Meta-Data Units

The base Linux distribution driver parses the /etc/os-release file, looks
at the ID, ID_VERSION and optionally the ID_LIKE fields.  They are
used as a standard way to determine the distribution for which packaging
meta-data is being collected for.

The id and version match strategy requires that both the os-id and
os-dependencies fields are present and that they match the ID and
ID_VERSION values. This strategy allows the test maintainer to express each
dependency accurately for each operating system they wish to support.

The id match strategy is only used when the os-version is not defined.
It is useful when a single definition is applicable to many subsequent
releases.  This is especially useful when job works well with sufficiently old
version of a third party dependency and there is no need to repeatedly re-state
the same dependency for each later release of the operating system.

The id_like match strategy is only used as a last resort and can be seen as a
weaker id match strategy. This  time the os-id field is compared to the
ID_LIKE field (if present). It is useful for working with Debian
derivatives, like Ubuntu.

Each matching packaging meta-data unit is then passed to the driver to generate
packaging meta-data.




Example

This is an example packaging meta-data unit, as taken from the resource provider:

unit: packaging meta-data
os-id: debian
Depends:
 python3-checkbox-support (>= 0.2),
 python3 (>= 3.2),
Recommends:
 dmidecode,
 dpkg (>= 1.13),
 lsb-release,
 wodim





This will cause the binary provider package to depend on the appropriate
version of python3-checkbox-support and python3 in both Debian,
Ubuntu and, for example, Elementary OS. In addition the package will
recommend some utilities that are used by some of the jobs contained in this
provider.




Using Packaging Meta-Data in Debian

To make use of the packaging meta-data, follow those steps:


	Ensure that /etc/os-release exists in your build chroot. On Debian it is
a part of the base-files package which is not something you have to worry
about but other distributions may use different strategies.



	Mark the binary package that contains the provider with the
X-Plainbox-Provider: yes header.



	Add the ${plainbox:Depends}, ${plainbox:Recommends} and
${plainbox:Suggests} variables to the binary package that contains the
provider.



	Override the gen_control debhelper rule and run the python3 manage.py
packaging command in addition to running dh_gencontrol:

override_dh_gencontrol:
    python3 manage.py packaging
    dh_gencontrol















          

      

      

    

  

    
      
          
            
  
Plainbox RFC822 Specification

The syntax is only loosely inspired by the actual RFC 822 [https://tools.ietf.org/html/rfc822.html] syntax. Since
Plainbox is not processing email, the original specification is used only as an
inspiration. One of the most important aspect of the syntax we’re using is
relative familiarity for other users of the system and ease-of-use when using
general, off-the-shelf text editors.


Backus–Naur Form

An approximated syntax can be summarized as the following BNF:

record-list: record-list '\n' record
             | record
record: entry-list '\n\n' entry
        | entry
entry: KEY ':' VALUE
KEY: ^[^:]+
VALUE: .+\n([ ].+)*





There are two quirks which not handled by this syntax (see below). Otherwise
the syntax is very simple. It defines a list of records. Each record is a list
of entries. Each entry is a key-value pair. Values can be multi-line, which
allows for convenient expression of longer text fragments.




Quirk 1 – the magic dot

Due to the way the multi-line VALUE syntax is defined, it would be impossible
(or possible but dependant only on whitespace, which is not friendly) to
include two consecutive newlines. For that reason a line consisting of a single
space, followed by a single dot is translated to an empty line.

The example below:

key:
 .
 more value





Is parsed as an ENTRY (in python syntax):

("key", "\nvalue")








Quirk 2 – the # comments

Since it’s a line-oriented format and people are used to being able to insert
comments anywhere with the # comment notation, any line that _starts_ with
a hash or pound character is discarded. This happens earlier than other parts
of parsing so comments are invisible to the rest of the parser. They can be
included anywhere, including in the middle of a multi-line value.

Example:

# this is a comment
key: value
 multi-line
# comment!
 and more











          

      

      

    

  

    
      
          
            
  
Reporting Bugs

To report bugs on the Checkbox project you will need a launchpad account. You
may find instructions on how to create one [https://help.launchpad.net/YourAccount/NewAccount] useful. Once you have an
account you can report bugs [https://bugs.launchpad.net/checkbox-project/+filebug].





          

      

      

    

  

    
      
          
            
  
The “Checkbox Stack”

The Checkbox Stack is a collection of projects that together constitute a
complete testing and certification solution. It is composed of the following
parts (see table below for extra details). All of the projects are linked to
from the Launchpad project group [https://launchpad.net/checkbox-project].


Architecture Diagram

[image: Architecture Diagram]This diagram contains a high-level approximation of the current Checkbox
architecture. There are three main “pillars”. On the left we have end
products. Those are actual tools that certification and engineers are using.
On the right we have the test market. This is a open market of tests vendors
and suppliers. The tests are wrapped in containers known as providers. In the
center we have three shared components. Those implement the bulk of the
framework and user interfaces for test execution. Finally in the bottom-left
corner there is a part of checkbox (a library) that is shared with HEXR for
certain tasks. HEXR is a out-of-scope web application used by part of the
certification process. Arrows imply communication with the shape of the arrow
shows who calls who.

As mentioned before, in the center column there are three main components of
shared code (shared by everyone using the end products that are discussed
below). The shared code is composed of plainbox, checkbox and
checkbox-converged.  Component responsibilities are discussed in more detail in
the table below.  Here we can see that checkbox and checkbox-converged use
plainbox API.  checkbox-converged does so using pyotherside, and checkbox uses
this api directly through python 3.

In the right hand side column there are various test providers. The checkbox
project is producing and maintaining a number of providers (see the table
below) but it is expected that our downstream users will also produce their own
providers (specific to a customer or project). Eventually some providers may
come from third parties that will adopt the format.

Lastly in the bottom-left corner, the shared library, this library contains
many parsers of various file formats and output formats. Technically this
library is a dependency of HEXR, checkbox and of providers. As an added
complexity the library needs to be called from python3 code and python2 code.


Note

The communication between checkbox and plainbox is bi-directional.
Plainbox offers some base interfaces and extension points. Those are all
exposed through plainbox (using common APIs) but some of those are actually
implemented in checkbox-ng.




Warning

All internal APIs is considered unstable.
Stable APIs include:


	unit definitions

	SessionAssistant API

	launcher syntax








Component Descriptions








	Project
	Responsible for
	Type




	Checkbox-Converged
	
	The QML user interface

	The graphical launcher for
providers, e.g.
checkbox-certification-client




	Application


	Checkbox (CLI)
	
	The python command-line interface
	the text user interface

	the SRU testing command





	Additional certification APIs
	sending data to Launchpad

	sending data to HEXR








	Application


	Client Certification
Provider
	
	canonical-certification-client
executable

	client certification test plans




	Provider


	Server Certification
Provider
	
	server certification test plans

	additional server test plans




	Provider


	System-on-Chip Server
Certification Provider
	
	SoC server certification test plans




	Provider


	Checkbox Provider
	
	Almost all job definitions

	Most of custom “scripts”

	Default and SRU test plans




	Provider


	Resource Provider
	
	Almost all resource jobs

	Almost all resource “scripts”




	Provider


	Checkbox Support
	
	Support code for various providers

	Parsers for many text formats




	Library


	PlainBox
	
	Almost all core logic
	RFC822 (job definition) parser

	Configuration handling

	Testing session (suspend/resume)

	Job runner

	Trusted launcher

	Dependency resolver

	Command line handling

	The XML, HTML and XSLX exporters

	and more...





	Provider development toolkit
	‘plainbox startprovider’

	‘manage.py’ implementation








	Library
and
Development
Toolkit











          

      

      

    

  

    
      
          
            
  
Checkbox launchers tutorial

Checkbox launchers are INI files that customize checkbox experience. The
customization includes:


	choosing what jobs will be run

	how to handle machine restart

	what type of UI to use

	how to handle the results



Each section in the launcher is optional, when not supplied, the default values
will be used.

This tutorial describes Launchers version 1.


External configuration files

Launcher can specify external file(s) to load values from.

[config]

Beginning of the configuration section.

config_filename

Name of the configuration file to look for. Default value: checkbox.conf

The directories that will be searched for the file are /etc/xdg/ and
~/.config/.

Example:

[config]
config_filename = testing.conf





This will make checkbox look for /etc/xdg/testing.conf and
~/config/testing.conf files.

The config_filename may be an absolute path, and may use environment
variables

Example:

[config]
config_filename = $MYCONFIGS/testing.conf

[config]
config_filename = /home/ubuntu/next-testing.conf





For more details about value resolution order see configs




Launcher meta-information

Launcher meta-information helps to provide consistent checkbox behaviour in the
future.

[launcher]

Beginning of the launcher meta-information section.

app_id

This fields helps to differentiate between checkbox front-ends. This way
sessions started with launcher with one app_id won’t interfere with
sessions started with a different launcher (provided it has app_id set to
other value).  The app_id should be in a IQN form. Default value:
2016.com.canonical:checkbox-cli

app_version

This field is purely informational.

launcher_version

Version of the launcher language syntax and semantics to use.

api_flags

API flags variable determines optional feature set.
List of API flags that this launcher requires. Items should be seperated by
spaces or commas. The default value is an empty list.

api_version

API version determines the behaviour of the launcher. Each checkbox feature  is
added at a specific API version. Default behaviours don’t change silently;
explicit launcher change is required. Default value: 0.99

stock_reports

Stock reports are shortcuts in creating common reports. Instead of having to
specify exporter, transport and a report section in a launcher, you can use any
number of the stock ones. In launchers version 1 there are 4 stock reports you
may use:



	text - print results as text on standard output

	submission_files - write html, xlsx, json and xml
files to $XDG_DATA_HOME directory (or to ~/.local/share/ if
$XDG_DATA_HOME is not defined.

	certification - send results to certification site

	certification-staging - send results to staging version of
certification site






This field is a list; use commas or spaces to seperate stock reports. The
default value: text, certification, submission_files.

When using certification stock report, secure_id might be overriden by
the launcher. To do this define secure_id in a transport:c3 section
(this is the transport that’s used by the certification stock reports).

Launcher section example:

[launcher]
app_id = 2016.com.foobar:system-testing
launcher_version = 1
stock_reports = text





Launcher using all defaults with overriden secure_id:

[transport:c3]
secure_id = 001122334455667788








Providers section

This section provides control over which providers are used by the launcher.

[providers]

Beginning of the providers section.

use

A list of globs, from which a provider id must match at least one in order to
be used. By default all providers are used.

Providers section example:

[providers]
use = provider1, provider2, provider-*








Test plan section

This section provides control over which test plans are visible in the menus
and optionally forces the app to use particular one.

[test plan]

Beginning of the test plan section.

unit

An ID of a test plan that should be selected by default. By default nothing is
selected.

filter

Glob that test plan IDs have to match in order to be visible. Default value:
*

forced

If set to yes, test plan selection screen will be skipped. Requires
unit field to be set. Default value: no.




Test selection section

This section provides lets forcing of test selection.

[test selection]

Beginning of the test selection section

forced

If set to yes, test selection screen will be skipped and all test specified
in the test plan will be selected. Default value: no




User Interface section

This section controls which type of UI to use.

[ui]

Beginning of the user interface section

type

Type of UI to use. This has to be set to interactive, silent,
converged, or converged-silent.
Default value: interactive, which runs the Checkbox command line version.
Note: the converged and converged-silent UI types will launch the QML
interface and requires checkbox-converged to be installed on your system.
Note: using silent or converged-silent UI types requires forcing
test selection and test plan selection.

dont_suppress_output


Note

This field is deprecated, use ‘output’ to specify which jobs should have
their output printed to the screen.



Setting this field to yes disables hiding of command output for jobs of
type local, resource and attachment. Default value: no.

output

This setting lets you hide output of commands run by checkbox. It can be set to
one of the following values:


	show - output of all jobs will be printed

	hide-resource-and-attachment - output of resource and attachment jobs
will be hidden, output of other job types will be printed

	hide-automated - output of shell jobs as well as attachment and resource
jobs will be hidden. Only interactive job command’s output will be shown

	hide - same as hide-automated. This value is deprecated, use
hide-automated



Default value: show


Note

Individual jobs can have their output hidden by specifying
‘suppress-output’ in their definition.



verbosity

This setting makes checkbox report more information from checkbox internals.
Possible values are:


	normal - report only warnings and errors.

	verbose - report important events that take place during execution (E.g.
adding units, starting jobs, changing the state of the session)

	debug - print out everything



Default value: normal


Note

You can also change this behavior when invoking Checkbox by using
--verbose and --debug options respectively.



auto_retry

If set to yes, failed jobs will automatically be retried at the end of
the testing session. In addition, the re-run screen (where user can select
failed and skipped jobs to re-run) will not be shown. Default value: no.

max_attempts
Defines the maximum number of times a job should be run in auto-retry mode.
If the job passes, it won’t be retried even if the maximum number of attempts
have not been reached. Default value: 3.

delay_before_retry
The number of seconds to wait before retrying the failed jobs at the end of
the testing session. This can be useful when the jobs relying on external
factors (e.g. a WiFi access point) and you want to wait before retrying the
same job. Default value: 1.


Warning

When auto_retry is set to yes, every failing jobs will be retried.
This can be a problem, for instance, for jobs that take a really long time
to run. To avoid this, you can use the auto-retry=no inline override
in the test plan to explicitely mark each job you do not wish to see
retried.

For example:

id: foo-bar-and-froz
_name: Tests Foo, Bar and Froz
include:
    foo
    bar     auto-retry=no
    froz





In that case, even if job bar fails and auto-retry is activated, it
will not be retried.






Restart section

This section enables fine control over how checkbox is restarted.

[restart]

Beginning of the restart section

strategy

Override the restart strategy that should be used. Currently supported
strategies are XDG and Snappy. By default the best strategy is
determined in runtime.




Environment section

[environment]

Beginning of the environment section

Each variable present in the environment section will be present as
environment variable for all jobs run.

Example:

[environment]
TESTING_HOST = 192.168.0.100








Generating reports

Creation of reports is govern by three sections: report, exporter, and
transport. Each of those sections might be specified multiple times to
provide more than one report.


Exporter

[exporter:exporter_name]

Beginning of an exporter declaration. Note that exporter_name should be
replaced with something meaningful, like html.

unit

ID of an exporter to use. To get the list of available exporter in your system
run $ plainbox dev list exporter.

options

A list of options that will be supplied to the exporter. Items should be seperated by
spaces or commas.

Example:

[exporter:html]
unit = 2013.com.canonical.plainbox::html








Transport

[transport:transport_name]
Beginning of a transport declaration. Note that transport_name should be
replaced with something meaningful, like standard_out.

type

Type of a transport to use. Allowed values are: stream, file, and
certification.

Depending on the type of transport there might be additional fields.









	transport type
	variables
	meaning
	example




	stream
	stream
	which stream to
use stdout
or stderr
	[transport:out]

type = stream

stream = stdout




	file
	path
	where to save
the file
	[transport:f1]

type = file

path = ~/report




	certification
	secure-id
	secure-id to
use when
uploading to
certification
sites
	[transport:c3]

secure_id = 0123456789ABCD

staging = yes




	staging
	determines if
staging site
should be used
Default:
no








Report

[report:report_name]

Beginning of a report  declaration. Note that report_name should be
replaced with something meaningful, like to_screen.

exporter

Name of the exporter to use

transport

Name of the transport to use

forced

If set to yes will make checkbox always produce the report (skipping the
prompt). Default value: no.

Example of all three sections working to produce a report:

[exporter:text]
unit = 2013.com.canonical.plainbox::text

[transport:out]
type = stream
stream = stdout

[report:screen]
exporter = text
transport = out
forced = yes










Launcher examples

1) Fully automatic run of all tests from
‘2013.com.canonical.certification::smoke’ test plan concluded by producing text
report to standard output.

#!/usr/bin/env checkbox-cli

[launcher]
launcher_version = 1
app_id = 2016.com.canonical.certification:smoke-test
stock_reports = text

[test plan]
unit = 2013.com.canonical.certification::smoke
forced = yes

[test selection]
forced = yes

[ui]
type = silent

[transport:out]
type = stream
stream = stdout

[exporter:text]
unit = 2013.com.canonical.plainbox::text

[report:screen]
transport = outfile
exporter = text





2) Interactive testing of FooBar project. Report should be uploaded to the
staging version of certification site and saved to /tmp/submission.xml

#!/usr/bin/env checkbox-cli

[launcher]
launcher_version = 1
app_id = 2016.com.foobar:system-testing

[providers]
use = 2016.com.megacorp.foo::bar*

[test plan]
unit = 2016.com.megacorp.foo::bar-generic

[ui]
type = silent
output = hide

[transport:certification]
type = certification
secure-id = 00112233445566
staging = yes

[transport:local_file]
type = file
path = /tmp/submission.xml

[exporter:xml]
unit = 2013.com.canonical.plainbox::hexr

[report:c3-staging]
transport = outfile
exporter = xml

[report:file]
transport = local_file
exporter = xml











          

      

      

    

  

    
      
          
            
  
QML-native Jobs Tutorial


Contents


	QML-native Jobs Tutorial
	What is a qml-native job

	Software requirements
	Ubuntu-SDK installation

	Plainbox installation





	First qml-native job - Smoke test

	How to run jobs

	Multi-page tests
	Flat page hierarchy

	Using page stack





	Migrating QtQuick app to a qml-native test
	Plainbox job definition for the test

	Testing qml job in Checkbox Touch on Ubuntu device





	Confined Qml jobs










What is a qml-native job

A qml-native job is a simple Qt Quick application (it usually is one .qml file)
designed to test computer systems as any other plainbox job, difference being
that it can have fully blown GUI and communicates with checkbox stack using
predefined interface.




Software requirements

To develop and run qml-native jobs you need two things:

Ubuntu-SDK and Plainbox


Ubuntu-SDK installation

To install Ubuntu-SDK just run

# apt-get install ubuntu-sdk

Ubuntu-SDK, once opened, will ask you if you want to create any kit.

[image: ubuntu-sdk kit creation wizard.]
Go ahead and create one matching the architecture you’re running on. And grab
a coffee, as this may take awhile. If prompted about emulator installation, skip
the screen.




Plainbox installation

add checkbox-dev PPA:

# apt-add-repository ppa:checkbox-dev/ppa

retrieve the list of packages:

# apt-get update

install latest plainbox

# apt-get install plainbox

If you want to work on the greatest and latest of Plainbox, you might want to
use trunk version. To do that follow these steps:

$ bzr checkout --lightweight lp:checkbox
$ cd checkbox
$ ./mk-venv venv
$ . venv/bin/activate





Now you should be able to launch plainbox-qml-shell command.






First qml-native job - Smoke test

Let’s build a very basic test that shows pass and fail buttons.  All
qml-native jobs start as ordinary QtQuick Item{}, with testingShell
property and testDone signal. I.e.

import QtQuick 2.0
Item {
    property var testingShell;
     signal testDone(var test);
}





That’s the boilerplate code every qml-native job will have.
Now let’s add two buttons.:

import QtQuick 2.0
import Ubuntu.Components 0.1
Item {
    property var testingShell;
    signal testDone(var test);
    Column {
        Button {
            text: "pass"
            onClicked: testDone({outcome: "pass"})
        }
        Button {
            text: "fail"
            onClicked: testDone({outcome: "fail"})
        }
    }
}





Save the above code as simple-job.qml. We will run it in a minute.

{outcome: "pass"} - this code creates an object with one property -
outcome that is set the value of "pass".

testDone({outcome: "pass"}) -  triggers testDone signal sending newly
created object. This informs the governing infrastructure that the test is
done and the test passed.




How to run jobs

Now we’re ready to test newly developed qml job. Run:

$ plainbox-qml-shell simple-job.qml





[image: ubuntu-sdk kit creation wizard.]
It’s not the prettiest qml code in the world, but it is a proper qml-native
plainbox job!




Multi-page tests

Two common approaches when developing multi-page qml app are flat structure, or
page navigation using page stack.


Flat page hierarchy

The simplest way is to create two Page components and switch their visibility
properties.  E.g.:

Item {
    id: root
    property var testingShell;
    Page {
        id: firstPage
        Button {
            onClicked: {
                firstPage.visible = false;
                secondPage.visible = true;
            }
        }
    }
    Page {
        id: secondPage
        visible: false
    }
}








Using page stack

testingShell defines pageStack property that you can use for multi-page
test with navigation. E.g.:

Item {
    id: root
    property var testingShell;
    Page {
        id: firstPage
        visible: false
        Button {
            onClicked: testingShell.pageStack.push(second)
        }
    }
    Page {
        id: secondPage
        visible: false
    }
    Component.onCompleted: testingShell.pageStack.push(first)
}










Migrating QtQuick app to a qml-native test

Start by creating ordinary “QML App with Simple UI”

[image: ubuntu-sdk kit creation wizard.]
The code generated by SDK should look like this:

[image: ubuntu-sdk kit creation wizard.]
Now you can do a typical iterative process of developing an app that should
have the look and feel of the test you would like to create.

Let’s say you’re satisfied with the following app:

import QtQuick 2.0
import Ubuntu.Components 1.1

MainView {
    useDeprecatedToolbar: false

    width: units.gu(100)
    height: units.gu(75)

    Page {
        Column {
            spacing: units.gu(1)
            anchors {
                margins: units.gu(2)
                fill: parent
            }

            Label {
                id: label
                text: i18n.tr("4 x 7 = ?")
            }

            TextField {
                id: input
            }

            Button {
                text: i18n.tr("Check")

                onClicked: {
                    if (input.text == 28) {
                        console.log("Correct!");
                    } else {
                        console.log("Error!");
                    }
                }
            }
        }
    }
}





Notice that the app has a MainView component and one Page component.
These are not needed in qml-native jobs, as the view is managed by the testing
shell.  Also, the outcome of the app is a simple console.log() statement.
To convert this app to a proper qml-native job we need to do three things:



	remove the bits responsible for managing the view

	add testingShell property and the testDone signal

	call testDone once we have a result






Final result:

import QtQuick 2.0
import Ubuntu.Components 1.1
Item {
    property var testingShell;
    signal testDone(var test);

    Column {
        spacing: units.gu(1)
        anchors {
            margins: units.gu(2)
            fill: parent
        }

        Label {
            id: label
            text: i18n.tr("4 x 7 = ?")
        }

        TextField {
            id: input
        }

        Button {
            text: i18n.tr("Check")
            onClicked: {
                if (input.text == 28) {
                    testDone({outcome: "pass"});
                } else {
                    testDone({outcome: "fail"});
                }
            }
        }
    }
}






Plainbox job definition for the test

The qml file we’ve created cannot be considered a plainbox job until it is
defined as a unit in a plainbox provider.

Consider this definition:

id: quazi-captcha
category_id: Captcha
plugin: qml
_summary: Basic math captcha
_description:
 This test requires user to do simple multiplication
qml_file: simple.qml
estimated_duration: 5





Two bits that are different in qml jobs are plugin: qml and
qml_file: simple.qml

plugin field specifies the type of the plainbox job. The value of qml
informs checkbox applications that this should be run in QML environment
(testing shell) and qml_file field specifies which file serves as the entry
point to the job. The file must be located in the data directory of the
provider the job is defined in.

For other information regarding plainbox job units see:

http://plainbox.readthedocs.org/en/latest/manpages/plainbox-job-units.html

To add this job to the plainbox provider with other qml jobs, paste the job
defintion to:
checkbox/providers/2015.com.canonical.certification:qml-tests/units/qml-tests.pxu




Testing qml job in Checkbox Touch on Ubuntu device

With job definition in qml-tests provider, and the qml file copied to its data
directory we can build and install checkbox click package.
In checkbox/checkbox-touch run:

./get-libs
./build-me --provider ../providers/2015.com.canonical.certification\:qml-tests/ \
--install





Launch the “Checkbox” app on the device and your test should be live.






Confined Qml jobs

Sometimes there is a need to run a job with a different set of policies.
Checkbox makes this possible by embedding such jobs into the resulting click
package as seperate apps. Each of those apps have their own apparmor
declaration, so each one have its own, seperate entry in the Trust database.

To request Checkbox to run a qml job as confined, add ‘confined’ flag to its
definition.

E.g.:

id: confined-job
category_id: confinement-tests
plugin: qml
_summary: Job that runs as a seperate app
_description:
 Checkbox should run this job with a seperate set of policies.
qml_file: simple.qml
flags: confined
estimated_duration: 5





After the confined jobs are defined, run generate-confinement.py in the
root directory of the provider, naming all confined jobs that have been
declared.

E.g.:

cd my_provider
~/checkbox/checkbox-touch/confinement/generate-confinement.py confined-job





The tool will print all the hooks declaration you need to add to the
manifest.json file.

Now, your multi-app click is ready to be built.







          

      

      

    

  

    
      
          
            
  
Configuration values resolution order

The directories that are searched for config files are:
/etc/xdg/
~/.config/

The filename that’s looked up depends on how checkbox is run.


Invoking checkbox-cli (without launcher)

Assumed config file name is checkbox.conf




Invoking plainbox

Assumed config file name is plainbox.conf




Invoking launcher

The file name to look for is specified using config_filename variable from
launcher, from the [config] section. If it’s not present, checkbox.conf
‘ is used.




Apps using SessionAssistant or the plainbox internals directly

plainbox.conf is used, unless
SessionAsistant.use_alternate_configuration() is called.

Note that if same configuration variable is defined in more then one place, the
value resolution is as follows:
1. config file from ~/.config
2. launcher being invoked (only the new syntax launchers)
3. config file from /etc/xdg







          

      

      

    

  

    
      
          
            
  
Checkbox nested test plans tutorial

We designed checkbox to consume test providers. Hence the test harness and the
tests are completely separated. Checkbox can load tests from multiple providers.
They can be installed as Debian packages or loaded from source to build a snap.

To load the tests and run them we need a test plan. Test plans for checkbox are
a collection of job (test) ids meant to be run one by one.

Most of the time when we create a new test plan, there’s a need to include a
generic section, common to several other test plans. But the test plan unit was
not allowing such feature and we ended up having a lot of duplication across
our projects. And duplication means duplicated efforts to maintain all those
test plan sections in sync and up-to-date.

What if it could be possible now to have nested test plans. One being built by
aggregating sections from one or more “base test plans”?

Let’s review in detail this new feature available in checkbox since plainbox 0.29


Quick start

The only thing to add to your test plan is the identifier of the test plan you
want to include, as follow:

nested_part:
    2013.com.canonical.certification::my_base_test_plan





The test plan order will then be test plan include + all nested test plan
include, in that order.

Loading nested parts will load the include, mandatory_include and
bootstrap_include sections and all the overrides (category,
certification status).

Note: All mandatory includes will always be run first.

Note: Job and test plan ids can be listed in their abbreviated form (without
the namespace prefix) if the job definitions reside in the same namespace as
the provider that is defining the test plan.




Use cases

All the following examples are available here:
https://github.com/yphus/nested_testplan_demo To test them locally you just
need to develop the 3 providers and run one of the demo launchers:

git clone https://github.com/yphus/nested_testplan_demo.git
cd nested_testplan_demo/
find . -name manage.py -exec {} develop \;
./demo1 # or demo2, 3, 4, 5, 6.






How to use a base test plan?

Let’s use two providers, both belonging to the same namespace, 2016.com.ubuntu:

2016.com.ubuntu:foo and 2016.com.ubuntu:baz

Baz provider contains the following units, 4 jobs and a test plan (our base
test plan):

id: hello
command: echo hello
flags: simple

id: bye
command: echo bye
flags: simple

id: mandatory
command: true
flags: simple

id: bootstrap
command: echo os: ubuntu
plugin: resource
flags: simple

unit: test plan
id: baz_tp
_name: Generic baz test plan
_description: This test plan contains generic test cases
estimated_duration: 1m
include:
    hello       certification-status=blocker
    bye         certification-status=non-blocker
mandatory_include:
    mandatory   certification-status=blocker
bootstrap_include:
    bootstrap





Foo provider contains two new tests:

id: always-pass
command: true
flags: simple

id: always-fail
command: true
flags: simple





We want to reuse the baz_tp in a new test plan (in the Foo provider) with
the two new tests. Such test plan will look like this:

unit: test plan
id: foo_tp_1
_name: Foo test plan 1
_description: This test plan contains generic tests + 2 new tests
include:
    always-pass       certification-status=blocker
    always-fail
nested_part:
    baz_tp





The jobs execution order is:


	bootstrap

	mandatory

	always-pass

	always-fail

	hello

	bye






How to use a base test plan, but without running them last?

Let’s keep the previous providers, Foo and Baz. This time we want to run the
base test plan between always-pass and always-fail. In order to change
the job execution order, the new test plan will be made of several nested
parts, since they will follow the list order. Let’s create in the Foo provider
2 new test plans that we’ll use as nested parts to fine tune the job ordering:

unit: test plan
id: foo_tp_part1
_name: Foo test plan part 1
_description: This test plan contains part 1
estimated_duration: 1m
include:
    always-pass       certification-status=blocker

unit: test plan
id: foo_tp_part2
_name: Foo test plan part 2
_description: This test plan contains part 2
estimated_duration: 1m
include:
    always-fail





The final test plan will only contain nested parts:

unit: test plan
id: foo_tp_2
_name: Foo test plan 2
_description:
 This test plan contains generic tests + 2 new tests (but ordered differently)
include:
nested_part:
    foo_tp_part1
    baz_tp
    foo_tp_part2





Note: Always keep the include section (even empty) as this field is
mandatory and validation would failed otherwise (and the test plan never loaded
by checkbox)

The jobs execution order is:


	bootstrap

	mandatory

	always-pass

	hello

	bye

	always-fail






How to change category or certification status of jobs coming from nested parts?

The test plan override mechanism [http://plainbox.readthedocs.io/en/latest/manpages/plainbox-test-plan-units.html?highlight=category-overrides]
still works with nested parts. For example the hello job from the Baz
provider was defined as a blocker and did not have a category.

Let’s update the previous use case:

unit: test plan
id: foo_tp_3
_name: Foo test plan 3
_description: This test plan contains generic tests + 2 new tests + overrides
include:
    always-pass       certification-status=blocker
    always-fail
nested_part:
    baz_tp
certification_status_overrides:
    apply non-blocker to hello
category_overrides:
    apply 2013.com.canonical.plainbox::audio to hello





To check that overrides worked as expected, you can open the json exporter
report:

"result_map": {
    "2016.com.ubuntu::hello": {
        "summary": "hello",
        "category_id": "2013.com.canonical.plainbox::audio",
        "certification_status": "non-blocker"
[...]








How to include a nested part from another namespace?

You can include a nested part from another namespace, just prefix the test plan
identifier with the provider namespace.

Let’s use a third provider (Bar, under the 2013.com.ubuntu namespace) as an
example:

id: sleep
command: sleep 1
flags: simple

id: uname
command: uname -a
flags: simple

unit: test plan
id: bar_tp
_name: bar test plan
_description: This test plan contains bar test cases
estimated_duration: 1m
include:
    sleep
    uname





Now in provider Foo, a test plan including a part from provider Bar will look
like this:

unit: test plan
id: foo_tp_4
_name: Foo test plan 4
_description:
 This test plan contains generic tests + 2 new tests + 2 tests from a
 different namespace provider
include:
    always-pass       certification-status=blocker
    always-fail
nested_part:
    baz_tp
    2013.com.ubuntu::bar_tp





The jobs execution order is:


	bootstrap

	mandatory

	always-pass

	always-fail

	hello

	bye

	sleep

	uname






Is it possible to have multiple levels of nesting?

Yes, it’s possible to have multiple levels of nesting, a nested part being
built from another nested parts, each level bringing its own set of new tests.

Let’s add a new test plan to provider Baz:

unit: test plan
id: baz_tp_2
_name: Generic baz test plan 2
_description: This test plan contains generic test cases + a nested part
include:
    hello       certification-status=blocker
    bye         certification-status=non-blocker
mandatory_include:
    mandatory   certification-status=blocker
bootstrap_include:
    bootstrap
nested_part:
    2013.com.ubuntu::bar_tp





As you can see this test plan includes a part from provider Bar (the same used
in the previous example). In provider Foo, we can create a new test plan
including baz_tp_2:

unit: test plan
id: foo_tp_5
_name: Foo test plan 5
_description: This test plan is built from multiple level of nested test plans
include:
    always-pass       certification-status=blocker
    always-fail
nested_part:
    baz_tp_2





The jobs execution order is still:


	bootstrap

	mandatory

	always-pass

	always-fail

	hello

	bye

	sleep

	uname






How to use a base test plan except a few jobs?

The test plan units support an optional field - exclude - that we can use
to remove jobs from a nested part include section.

Note: The exclude ids cannot remove jobs that are parts of the
mandatory_include sections (nested or not).

The test plan below (from provider Foo) won’t run the hello job of provider
Baz:

unit: test plan
id: foo_tp_6
_name: Foo test plan 6
_description: This test plan contains generic tests + 2 new tests - hello job
include:
    always-pass       certification-status=blocker
    always-fail
exclude:
    hello
nested_part:
    baz_tp





The jobs execution order is:


	bootstrap

	mandatory

	always-pass

	always-fail

	bye








Known limitations

You can create infinite loops if a nested part is calling itself or if
somewhere in the nested chain such a loop exists. Checkbox won’t like that and
so far there’s no validation to prevent it, be warned!







          

      

      

    

  

    
      
          
            
  
Contributing to Snappy Testing with Checkbox


Introduction

To support the release of devices running snappy Ubuntu Core, Canonical has
produced versions of Checkbox tailored specifically for these systems.

This document aims to provide the reader with enough information to contribute
new tests, or modify existing tests, with the goal of increasing coverage
wherever possible.


Brief anatomy of a Checkbox test tool

Checkbox test tools consist of a number components falling into three categories:



	Core testing framework (known as Plainbox)

	UI and launchers

	Test definitions and associated data contained in a “Provider”






To add tests one need only know the specifics of the Provider(s) that form
their test tool. The rest of this document will focus on Checkbox Providers and
how to work on them.






Snappy Provider

The Provider housing the majority of tests for snappy Ubuntu Core systems is
known as plainbox-provider-snappy and can be found in this launchpad project:
https://launchpad.net/plainbox-provider-snappy

All the code both for the core of Checkbox itself and for the tests is also
hosted on Launchpad. Refer to the instructions on the Code subpage to retrieve
the source files for the provider:
https://code.launchpad.net/plainbox-provider-snappy


Directory structure of the Provider

Using git to clone the provider, described above, will result in a directory
that looks like this (at time of writing):

checkbox@xenial:~$ ls -1 plainbox-provider-snappy/
plainbox-provider-snappy
plainbox-provider-snappy-resource





The first directory listed is the provider holding the tests, the second is a
supporting provider which gathers information about the system at the start of
a test run. Lets look in more detail at the test provider:

checkbox@xenial:~$ ls -1 plainbox-provider-snappy/plainbox-provider-snappy
bin
data
manage.py
po
src
units











	bin
	Executable scripts that can be called as part of the test
(refer to command field below)


	data
	Data to support the running of tests e.g. configuration files


	manage.py
	Provider management script. Must be present in each provider to
specify unique identifiers.


	po
	Translation support, files here are used to provide translations
for tests fields in to other languages.


	src
	Source files and accompanying build scripts e.g. C source code
and a Makefile, that are compiled in to binaries and packaged
with the provider for use as part of the test (refer to command
field below)


	units
	“Job” definition files








Jobs

A Job is Checkbox parlance for an individual test. They are defined in text
files whose syntax is loosely based on RFC 822. Here is an example from
plainbox-provider-snappy:

id: cpu/offlining_test
_summary:
 Test offlining of each CPU core
_description:
 Attempts to offline each core in a multicore system.
plugin: shell
command: cpu_offlining
category_id: cpu
estimated_duration: 1s
user: root





An overview of the fields in this example test:







	id
	A unique identifier for the job


	summary
	A human readable name for the job. It must be one line long,
ideally it should be short (50-70 characters max)


	plugin
	Best thought of as describing the “type” of job.
Note that it is preferred for jobs to automated wherever
possible so as to minimize both time to complete and possibility
for operator error. The key job types starting with the most
automated are:


	shell - Run the command field and use the return value to
determine the test result

	user-interact - Ask the user to perform an action and then run
the command field and use the return value to determine the
test result

	user-interact-verify - Ask the user to perform an action, then
run the command field, and then ask the user to determine the
test result .g. by examining the command output or observing
some physical behaviour

	manual - The last resort, just asks the user to both carry out
some action(s) and then determine the test result






	command
	A command or script to run as part of the test. A multi-line
command or shell script can be used. Refer to the plugin field
above for significance to the test outcome.


	category_id
	Groups tests together for convenience in UIs etc.


	estimated_duration
	An estimate of the time taken to execute the job. Uses hours(h),
minutes(m) and seconds(s) format e.g. 1h 23m 4s





Further reading:
http://plainbox.readthedocs.org/en/latest/manpages/plainbox-job-units.html




Test plans

Test Plans are a facility for describing a sequence of Job definitions that
should be executed together. Jobs definitions are selected for inclusion in a
Test Plan by either listing their identifier (see id: field above) or by
inclusion of a regular expression that matches their identifier.

Here is an example of a Test Plan from plainbox-provider-snappy, it has been
abbreviated:

id: snappy-generic
unit: test plan
_name: QA tests for Snappy Ubuntu Core devices
estimated_duration: 1h
include:
 wifi/.*
 audio/.*











	id
	A unique identifier for the test plan


	unit
	Distinguishes this definition from that of e.g. a test


	_name
	A human readable name for the test plan


	estimated_duration
	A estimate of the time taken to execute the test plan.
Uses hours(h), minutes(m) and seconds(s) format e.g. 1h 23m 4s


	include
_id
	The list of tests that make up the test plan. It can be
multi-line and include individual job identifiers or patterns
matching multiple identifiers





Further reading:
http://plainbox.readthedocs.org/en/latest/manpages/plainbox-test-plan-units.html






Creating a test in five easy steps


1. Configure your development environment

Development of Checkbox tests is best carried out on an Ubuntu Desktop system.
You will need either a dedicated PC or Virtual Machine running Ubuntu Desktop
16.04 (Xenial Xerus) to gain access to the tools supporting the building of
packages for snappy Ubuntu Core.

When your system is up and running make sure the following packages are
installed:

$ sudo apt install snapcraft git:





And to ease development, remove these pre-installed providers:

$ sudo apt remove plainbox-provider-checkbox plainbox-provider-resource-generic

    You should now have all the tools required to modify and build a provider.








2. Get the source

Clone the providers:

$ git clone https://git.launchpad.net/plainbox-provider-snappy





Clone the snapcraft packaging branch:

$ git clone https://git.launchpad.net/~checkbox-dev/plainbox-provider-snappy/+git/packaging





Further instructions will assume these were cloned in to your user’s home
directory.




3. Make your changes

The units folder contains a number of files named after categories. This is not
a requirement, but has been used here too make finding tests a bit easier.
Either create a new file or edit an existing category.:

$ git checkout -b <NEW-BRANCH>
$ touch ~/plainbox-provider-snappy/plainbox-provider-snappy/units/<category>.pxu
$ editor ~/plainbox-provider-snappy/plainbox-provider-snappy/units/<category>.pxu





If adding a new test, make sure to add the test id to the “includes” section of
any test plans you’d like this test to be part of.




4. Check your test is valid

Use the provider management script to check the provider is still valid after
your modifications:

$ cd ~/plainbox-provider-snappy/plainbox-provider-snappy-resource
$ ./manage.py develop
$ cd ~/plainbox-provider-snappy/plainbox-provider-snappy
$ ./manage.py validate





The validate tool will provide advisories to indicate places where you provider
does not follow best practices, warnings to indicate places where runtime
issues could arise, and errors to indicate things which must be fixed for the
provider to be parsed and run correctly by Checkbox. This validation result is
given in the last line:

The provider seems to be valid








5. Build the Checkbox snap package

The tools to build a new version of the Checkbox tool snap package are found in
your clone of the packaging branch. This uses the snapcraft tool which is
controlled by the snapcraft.yaml file. To build a snap with your local changes
examine this file for the source sections of the provider parts:

$ editor ~/packaging/snapcraft.yaml

...
    plainbox-provider-snappy:
        after: [checkbox]
...





Modify these so the point to your local providers:[a][b]:

...
    plainbox-provider-snappy:
        source: <path-to-local-provider>
        source-type: local
        after: [checkbox]
...





Then you can build the snap package:

$ snapcraft clean
...
$ snapcraft
...
Snapped checkbox-snappy_0.10~s16_amd64.snap








6. Run the tests

See  Running Checkbox on Ubuntu Core
which describes the process of installing and running the snap.




7. Submit your modifications to the project

To push code, report bugs etc. you will require a launchpad account:
https://login.launchpad.net/

Once you have an account you will be able to push code up to Launchpad. You can
they request a merge in to the master repository. To get the code to Launchpad
follow these steps:

$ git add <file>
$ git commit -m “Adds a test for...”
$ git remote add my-repo git+ssh://git.launchpad.net/~<USERNAME>/plainbox-provider-snappy
$ git push my-repo <NEW-BRANCH>





If you navigate to the plainbox-provider-snappy project on launchpad you should
now see your repository listed under the “Other repositories” section. Here you
can see my (jocave) personal repository listed at the top:










[image: _images/SnappyProvider1.png]









Clicking on your repository will take you to an overview page listing all your
branches:










[image: _images/SnappyProvider2.png]









Click on the branch you have uploaded and there will be an option to “Propose
for merging”.










[image: _images/SnappyProvider3.png]









Select this and fill out the form as follows:










[image: _images/SnappyProvider4.png]









Members of the team that maintain the project will be alerted to the Merge
Request and will review it for landing.









          

      

      

    

  

    
      
          
            
  
Running Checkbox on Ubuntu Core


Introduction

Checkbox is a hardware testing tool developed by Canonical for certifying
hardware with Ubuntu. Checkbox is free software and is available at
http://launchpad.net/checkbox.

To support the release of devices running snappy Ubuntu Core, Canonical has
produced versions of Checkbox tailored specifically for these systems.

This document aims to provide the reader with enough information to install and
run Checkbox on an Ubuntu Core system, and how to view/interpret/submit test
results.




Installation


Installing Ubuntu Core on KVM

Download the following release of Ubuntu Core (or the one provided by Canonical
for your project):

$ wget http://people.canonical.com/~mvo/all-snaps/16/all-snaps-pc.img.xz





Install it on a snappy DUT or boot the img file in kvm with:

$ unxz all-snaps-pc.img.xz
$ kvm -m 4096 -redir tcp:8022::22 ./all-snaps-pc.img





Log in as the ubuntu user (password ubuntu):

$ ssh -p 8022 ubuntu@localhost





Perform a snappy update:

$ sudo snap refresh








Installing Checkbox Snap

Now you are ready to install the checkbox snap,
install it straight from the store.


$ sudo snap install checkbox-snappy –edge –devmode







Running Checkbox

Simply launch checkbox using:

$ checkbox-snappy.test-runner











[image: _images/RunningSnappy1.png]






Checkbox keeps track are previous test runs, if a session is not completed,
you’ll be asked to resume your previous run or create a new session:







[image: _images/RunningSnappy2.png]






The first selection screen will ask you to select a test plan to run:







[image: _images/RunningSnappy3.png]






Move the selection with the arrow keys, select with space and confirm your
choice by moving the selection to <OK> and press Enter.  The next screen will
allow you to fine tune the tests you want to run:







[image: _images/RunningSnappy4.png]






Tests are grouped by categories, Expand/Collapse with Enter, select/unselect
with space (also works on categories). Press S to select all and D to Deselect
all the tests.







Start the tests by pressing T.







Checkbox is a test runner able to process fully automated tests/commands and
tests requiring user interaction (whether to setup or plug something to the
device, e.g USB insertion or to confirm that the device acts as expected, e.g a
led blinks).







Please refer to the checkbox documentation to learn more about the supported
type of tests.







A fully automated test will stream stdout/stderr to your terminal allowing you
to immediately look at the i/o logs (if the session is run interactively).
Attachments jobs are treated differently as they could generate lots of i/o.
Therefore their outputs are hidden by default.







Interactive jobs will pause the test runner and details the steps to complete
the test:







[image: _images/RunningSnappy5.png]









Getting Results

When the test selection has been run, the first displayed screen will allow you
to re-run failed jobs (e.g. the wireless access point was not properly
configured):







[image: _images/RunningSnappy6.png]






Commands to select the tests to rerun are the same used to select tests in the
first selection screen. Here you can rerun your selection with R or finish the
session by pressing F.







Checkbox will then print the the test results in the terminal and save them in
different formats locally on the device (and print their respective filenames):







[image: _images/RunningSnappy7.png]






The resulting reports can be easily pulled from the system via SCP, or by
simply copying to a USB stick.







          

      

      

    

  

    
      
          
            
  
Creating a custom Checkbox application for Ubuntu Core testing

This guide describes how to create a custom Checkbox application for testing a
new project (project meaning a new system that we want to test with Checkbox).


Initialize the project

Creating your working directory and initializing the projects.  Make sure you
have at least snapcraft version 2.13 (available in Ubuntu 16.04 or newer).:

mkdir checkbox-myproject
cd checkbox-myproject
snapcraft init
git init





You will now have a snapcraft.yaml file in the snap directory.
Modify it and  insert your title, description, version.


snap/snapcraft.yaml

name: checkbox-myproject
version: 1
summary: Checkbox tool for MyProject
description: Checkbox tool for MyProject
grade: devel
confinement: strict










Adding parts

Add the basic reusable snappy provider parts.


snap/snapcraft.yaml

(...)
parts:
    plainbox-provider-snappy:
        after: [plainbox-provider-snappy-resource]
    plainbox-provider-snappy-resource:
        after: [plainbox-dev, checkbox-support-dev, checkbox-ng-dev]

    network-tools:
        plugin: nil
        stage-packages:
            - network-manager
            - modemmanager
            - hostapd
            - iw
        snap:
            - usr/bin/mmcli
            - usr/lib/*/libmm-glib.so*
            - usr/bin/nmcli
            - usr/lib/*/libnm*
            - usr/sbin/hostapd
            - sbin/iw










Create a device/project specific provider

$ plainbox startprovider --empty 2016.com.canonical.qa.myproject:
plainbox-provider-myproject





The directory name for the provider is quite a mouthful, let’s change it to
something more managable.

$ mv 2016.com.canonical.qa.myproject:plainbox-provider-myproject
plainbox-provider-myproject





This new provider has to also be included as a part of the snap

:caption: snap/snapcraft.yaml
:name: snapcraft.yaml-with-custom-provider

(...)
parts:
    plainbox-provider-myproject:
        plugin: plainbox-provider
        source: ./plainbox-provider-myproject
        after: [plainbox-provider-snappy]








Create your new test plans (and jobs to go in them)

Edit the plainbox-provider-myproject provider by adding jobs and particularly
test plans that list all the jobs that you want to run.

By convention units reside in .pxu files in the units directory of the
provider. Let’s create one

$ cd plainbox-provider-myproject
$ mkdir units





Let’s add a job from Checkbox tutorials


units/jobs.pxu

id: my-first-job
_summary: 10GB available in $HOME
_description:
    this test checks if there's at least 10gb of free space in user's home
        directory
plugin: shell
estimated_duration: 0.01
command: [ `df -B 1G --output=avail $HOME |tail -n1` -gt 10 ]







You may read more on how to write jobs here: Job Unit

It is a good practice to group jobs in test plans, here’s one that will include
the my-first-job


unit/test-plan.pxu

unit: test plan
id: my-project-custom
_name: MyProject tests
_description:
    This test plan includes all test related to MyProject
include:
    my-first-job







You may read more on test plans here: Test Plan Unit




Reusing existing provider(s)

It’s best not to duplicate stuff, so if the test you want to run already exists
in another provider it is best to include that provider in the snap, and
include the test, or whole test plans from that provider in your new testing
project.

Let’s reuse disk tests from the “plainbox-provider-snappy” provider that we
already have as a part of the snap. All we need is a test plan that will
include both reused disk tests and the new custom ones.


unit/test-plan.pxu

id: my-project-all-tests
_name: All MyProject tests
_description:
    This test plan includes some disk tests from plainbox-provider-snappy
    and the my-first-job test.
include:
    2013.com.canonical.certification::disk/detect
    2013.com.canonical.certification::disk/stats_.*
    my-first-job







You can also include the whole external test plan. Let’s reuse the CPU
testing suite from plainbox-provider-snappy.


unit/test-plan.pxu

unit: test plan
id: my-project-all-tests
_name: All MyProject tests
_description:
    This test plan includes some disk tests from plainbox-provider-snappy
    and the my-first-job test.
include:
    2013.com.canonical.certification::disk/detect
    2013.com.canonical.certification::disk/stats_.*
    my-first-job
nested_part:
    2013.com.canonical.certification::cpu-full










Create Checkbox Launchers configurations

Launchers help to predefine how Checkbox should run. Read more here:
Checkbox launchers tutorial

First, let’s leave the provider directory and go back to the
checkbox-myproject.

$ cd ..





and write the first launcher


launchers/myproject-test-runner

#!/usr/bin/env checkbox-cli-wrapper
[launcher]
app_id = 2016.com.canonical.qa.myproject:checkbox
launcher_version = 1
stock_reports = text, submission_files

[test plan]
filter = *myproject*, *tpm-smoke-tests










Create wrapper scripts

We currently need wrapper scripts to discover providers, set up the execution
environment and work around a few other snappy issues. Add one like this:


launchers/checkbox-cli-wrapper:

#!/bin/bash

export PATH="$PATH:$SNAP/usr/sbin"
exec python3 $(which checkbox-cli) "$@"







Now we need to make the launchers executable

chmod +x launchers/*






snap/snapcraft.yaml

(...)
launchers:
    plugin: dump
    source: launchers/
    organize:
        '*': bin/










Declare the launchers to be Apps that exist in your Snap


snap/snapcraft.yaml

(...)
apps:
    myproject-test-runner:
        command: bin/myproject-test-runner







What’s left is to snap it all together!

$ snapcraft











          

      

      

    

  

    
      
          
            

Index



 R
 


R


  	
      	
    RFC

      
        	RFC 822


      


  







          

      

      

    

  _static/comment.png





_static/comment-bright.png





_static/up-pressed.png





_static/down.png





nav.xhtml

    
      Table of Contents


      
        		Checkbox


        		Introduction to Checkbox
          
          		Getting Started


          		Checkbox Command Line
            
            		checkbox-cli startprovider


            		checkbox-cli list


            		checkbox-cli list-bootstrapped


            		checkbox-cli launcher


            		checkbox-cli run


            


          


          		Looking Deeper
            
            		Providers


            


          


          


        


        		Checkbox tutorials
          
          		Creating an empty provider


          		Adding a simple job to a provider


          		Running jobs from a newly created provider


          		Developing provider without constantly reinstalling it


          		Improving job definition


          


        


        		Checkbox Unit Types
          
          		Job Unit
            
            		File format and location


            		Job Fields


            


          


          		Test Plan Unit
            
            		Test Plan Fields


            		Examples


            


          


          		Category Unit
            
            		Category Fields


            


          


          		Resource Job Units
            
            		Resources


            


          


          		Template Unit
            
            		Template-Specific Fields


            		Instantiation


            		Basic example


            		Real life example


            


          


          		Exporter Unit
            
            		File format and location


            		Fields


            		Example


            		How to use exporter units?


            


          


          		Manifest Entry Unit
            
            		File format and location


            		Fields


            		Example


            		Naming Manifest Entries


            		Using Manifest Entries in Jobs


            		Collecting Manifest Data


            		Supplying External Manifest


            


          


          		Packaging Meta Data Unit
            
            		File format and location


            		Fields


            		Matching Packaging Meta-Data Units


            		Example


            		Using Packaging Meta-Data in Debian


            


          


          		Plainbox RFC822 Specification
            
            		Backus–Naur Form


            		Quirk 1 – the magic dot


            		Quirk 2 – the # comments


            


          


          


        


        		Reporting Bugs


        		The “Checkbox Stack”
          
          		Architecture Diagram


          		Component Descriptions


          


        


        		Checkbox launchers tutorial
          
          		External configuration files


          		Launcher meta-information


          		Providers section


          		Test plan section


          		Test selection section


          		User Interface section


          		Restart section


          		Environment section


          		Generating reports
            
            		Exporter


            		Transport


            		Report


            


          


          		Launcher examples


          


        


        		QML-native Jobs Tutorial
          
          		What is a qml-native job


          		Software requirements
            
            		Ubuntu-SDK installation


            		Plainbox installation


            


          


          		First qml-native job - Smoke test


          		How to run jobs


          		Multi-page tests
            
            		Flat page hierarchy


            		Using page stack


            


          


          		Migrating QtQuick app to a qml-native test
            
            		Plainbox job definition for the test


            		Testing qml job in Checkbox Touch on Ubuntu device


            


          


          		Confined Qml jobs


          


        


        		Configuration values resolution order
          
          		Invoking checkbox-cli (without launcher)


          		Invoking plainbox


          		Invoking launcher


          		Apps using SessionAssistant or the plainbox internals directly


          


        


        		Checkbox nested test plans tutorial
          
          		Quick start


          		Use cases
            
            		How to use a base test plan?


            		How to use a base test plan, but without running them last?


            		How to change category or certification status of jobs coming from nested parts?


            		How to include a nested part from another namespace?


            		Is it possible to have multiple levels of nesting?


            		How to use a base test plan except a few jobs?


            


          


          		Known limitations


          


        


        		Contributing to Snappy Testing with Checkbox
          
          		Introduction
            
            		Brief anatomy of a Checkbox test tool


            


          


          		Snappy Provider
            
            		Directory structure of the Provider


            		Jobs


            		Test plans


            


          


          		Creating a test in five easy steps
            
            		1. Configure your development environment


            		2. Get the source


            		3. Make your changes


            		4. Check your test is valid


            		5. Build the Checkbox snap package


            		6. Run the tests


            		7. Submit your modifications to the project


            


          


          


        


        		Running Checkbox on Ubuntu Core
          
          		Introduction


          		Installation
            
            		Installing Ubuntu Core on KVM


            		Installing Checkbox Snap


            


          


          		Running Checkbox


          		Getting Results


          


        


        		Creating a custom Checkbox application for Ubuntu Core testing
          
          		Initialize the project


          		Adding parts


          		Create a device/project specific provider


          		Create your new test plans (and jobs to go in them)


          		Reusing existing provider(s)


          		Create Checkbox Launchers configurations


          		Create wrapper scripts


          		Declare the launchers to be Apps that exist in your Snap


          


        


      


    
  

_images/qml-tut-0.png
QtCreator

Intro
? Kits and Toolchains
Devices and Emulators

In order to create Apps for the Ubuntu platform, it Is required to create Kits. Kits
enable cross-platform and cross-configuration development. Kits consist of a set.
of values that define one environment, such as a target device, sysroot to bulld
agalnst, toolchaln to build with, platform specific AP set, and some metadata.

Note: It Is recommended to create Kits for each possible traget architecture
(1386, armhf). When developing with the emulator, the best experlence Is
provided by using a 1386 emulator and Kit

Kit Name






_images/cc3.png
Choose tests to run on your syster
[ 1 - Benchnarks tests}

= Benchnark for each disk
benchmarks/disk/hdparn-read_sda
- Benchnark for each disk
benchmarks/disk/hdparn-cache-read_sda
- CPU tests
cpusclocktest
cpu/maxfreq_test
cpu/maxfreq_test-log-attach
cpuofflining_test
cpusscaling_test
cpusscaling_test-log-attach
cputopology
Create resource info for supported optical actions
- Disk tests
- Check stats changes for each disk
disk/stats_sda
- SMART test
disk/snart_sda
- Verify systen storage perforns at or above baseline performance
disk/read_perfornance_sda
- Uerify that storage devices, such as Fibre Chamnel and RAID can be detected and perf.
disk/storage_device_sda
disksdetect
- Ethernet Device tests
- Autonated test to walk multiple netuork cards and test each one in sequence.
ethernet/nulti_nic_ethd

ethernet/mult ethl
ethernet/mult _ethz
ethernet/mult _eth3

ethernet/detect
- Informational tests
- SATA/IDE device information.

X

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Enter: Expand/Collapse  Select All  Deselect All Start Testing





_images/RunningSnappy4.png
External microphone works
Headphones work
Bluetooth
Ethernet
Informational tests
LEDs
Real Tine Clock (RTC)
Serial Port
Snappy Ubuntu Core
UsB 3.0
Uncategorised
Wireless Wide Area Network

Expand/Collapse  [elect AL

Beselect ALL

Start festing






_images/RunningSnappy3.png
[ 1 - Collect tpn (trusted platforn module) information
[X] - Qa tests for snappy ubuntu core devices
[ 1 - Ton (trusted platforn module) smoke tests






_images/SnappyProvider1.png
Jonathan

¢ @ [& Canonical Group Ltd [GB] https://code.launchpad.net/plainbox-providersn ¥ % (@ =

8 Jonathan Cave (ocave) - [Lag 0wt

? Snappy Provider for PlainBox

Overview Bugs Blueprints Translations  Answers

Get this repository: lew Bazaar branches & New repositores for
git clone https://git.launchpad.net/plainbox-provider-snappy Snappy Provider for
git clone gitsssh://git.launchpad.net/plainbox-provider-snappy PlainBox are Public.

Update this repository:

git push gitsssh://git.launchpad.net/plainbox-provider-snappy ® configure Code

@ Browse the code:

Branches

Name Last Modified Last Commit.

master 2016-04-15 Pp-ps: add bluez internal rfcomm tests

test-plan 2016-03-16 Use Joc's test plan instead, much cleaner

vivid 2016-03-16 Use Joc's test plan instead, much cleaner

new-test. 2016-02-24 AAdding new tests

1-40f 4results First « ious « Next b« Last

Other repositories

Name Last Modified
pi~jocave/plainbox-provider-snappy 20160415
Ipiplainbox-provider-snappy 20160415
Ip:-checkbox-dev/plainbox-provider-snappy/+git/packaging 2016-04-15






_images/RunningSnappy5.png
Outcome: job needs verification
Verification:

Verify that your voice is reprodu

Please decide what to do next:
outcone: job needs verification
conments:_none

Pick an action
c => add a conment
p => set outcome to pass
 => set outcone to fail
s => set outcome to skip

[cpfs]: AC

iced through the headphones clearly





_images/SnappyProvider3.png
Ip add-bluez-tests-categc x =\

Jonathan

«

r Snappy Provider for PlainBox

Overview m Bugs Blueprints  Translations  Answers

~jocave/plainbox-provider-snappy:add-bluez-
tests-category

Git » p:~jocave/plainbox-provider-snappy » add-bluez-tests-category

Last commit made on 2016-04-20

Get this branch:

git clone -b add-bluez-tests-category
https://git.launchpad.net/~jocave/plainbox-provider-snappy

git clone -b add-bluez-tests-category
git+ssh://git.launchpad.net/~jocave/plainbox-provider-snappy

Update this repository:

git push git+ssh://git.launchpad.net/~jocave/plainbox-provider-snappy
add-bluez-tests-category

@ Browse the code

Branch merges

(@ Propose for merging

Related source package recipes
i No recipes using this branch. @

(@ Create packaging recipe

Related snap packages

No snap packages using this branch.

(@ Create snap package

@ | @ Canonical Group Ltd [GB] https://code.launchpad.net/~jocave/plainbox-provider-snappy/+git/plairyy % @ =

& Jonathan Cave (jocave) *Log Out|





_images/cc2.png
Suite selection

X

- Stub
Stubl

Stubz

Netuork-only
Server—full-14.04]

~ Server-functional-14.04
Storage-only

Usb-only
Virtualization-only
Autotesting

Default

Husubnit

- Smoke

- Sniff

- Sru

}
!

oK >





_images/SnappyProvider4.png
X -

O Propose for merging : add-bluez-tests-category : lp:~jocave/plainbox-provider-snappy : Git : Code : Snappy Provider f

Ip Propose for merging :

Jonathan
<« @ | @ Canonical Group Ltd [GB] | https://code.launchpad.net/~jocave/plainbox-provider-snappy/+git/plairyy % [ =
Propose For merging -

Git » p:~jocave/plainbox-provider-snappy » add-bluez-tests-category » Propose for merging

Target repository:
® |p:plainbox-provider-snappy (repository details)- default repository
|p:~checkbox-dev/plainbox-provider-snappy/+git/packaging (repository details)
Other: (Choose...)
The repository that the source will be merged into.

Target reference path:
master

The reference within the target repository that the source will be merged into.

Description of the Change: (Optional)

Move the BlueZ internal tests in to a separate category. This makes test selection in the textland
CLI easier given the large number of tests generated from these templates.

Tested on St Louis device running a Series 16 image.|

Describe what changes your branch introduces, what bugs it fixes, or what features it implements.
Ideally include rationale and how to test.

Reviewer: (Optional)

(Choose...)
A person who you want to review this.
Review type: (Optional)

Lowercase keywords describing the type of review you would like to be performed.

[> Extra options

Propose Merge, or Cancel






_images/qml-tut-1.png





_images/qml-tut-3.png
Main.gml - MeaningOFLifeTest - Qt Creator

¥ [ MeaningOFfLifeTest

) MeaningOfLifeTest.qmlpr

> [ tests

L3 .excludes
s Main.gml
L Makefile
[ manifest json
[ MeaningOftLifeTest.apparr
[ MeaningOfiifeTest.deskt
[ MeaningOftifeTest.png

m)

(%)

Help

Main.qml
Main.gml
manifest.json
manifest json

- Type to locate (Ctr.

1 inport QtQuick 2.8
inport Ubuntu, Components 1.1

v
*

\brief MainView with a Label and Button elements.

¥ MainView {
7/ objecthiane for functional testing purposes (autopilot-gts)
objecthiame: "mainView

7/ Wote! applicationNane needs to match the “name" Field of the click manifest
applicationName: “meaningoflifetest.kissiel”

7o
This property enables the application to change orientation
when the device is rotated. The default is false.

/)

//autonaticorientation: true

7/ Removes the old toolbar and enables new features of the new header.
useDeprecatedToolbar: false

width: units.gu(100)
height: units.gu(75)

page {
title: il8n.tr("sinple")

column {
spacing: units.gu(1)
anchors {
margins: units.gu(2)
fill: parent

1

Label {
id: label
objecthame: "label"

text: i18n.tr("Hello

1

Button {
objectName: “button”
width: parent.width

text: 118n.tr("Tap me!")

onClicked: {
label.text = i18n.tr(*..world!")
1

il 1ssues ] search Results JIEY Application Output gl compile output JIFl QML Console JiE] General Messages |






_images/RunningSnappy7.png
Hardware Manifest
Collect information
Collect information
Collect information
Collect information
Collect information
Collect information

Collect information
Collect information

ckbox-ng/submission_2016-

file:///home/ubuntu/snaps/checkbox-snappy . sideload/LVMikRNXLDIT/ . Local /share/che

Collect the hardware manifest (interactively)

about installed software packages
about installed snap packages

about the running kernel

about installed systen (Lsb-release)
about the CPU

about dpkg version

Attach a copy of /sys/class/dni/id/*

Attach detailed sysfs property output from udev
Attach hardware database (udev)

Attach a list of PCI devices

Attach output of lsusb

about hardware devices (DHI)
about systen memory (/proc/meminfo)

SSH is enabled and operational
file: ///home/ubuntu/snaps/ checkbox-snappy . stdeload/LUMKRNXLDIT/ . Local /share/ che

04-01T13:16:09.137381.xnL

ckbox-ng/submission_2016-

04-01713:16:09.137381. htnl.

file:///hone/ubuntu/snaps/checkbox-snappy . sideload/LVMkRNXLDIT/ . Local /share/che
ckbox-ng/submission_2016-
file:///home/ubuntu/snaps/checkbox-snappy . sideload/LVMjkRNXLDIT/ . Local /share/che
ckbox-ng/submission_2016-

ubuntu@localhost:~$ |

04-01T13:16:09.137381. son

04-01T13:16:09.137381.x1sx





_images/RunningSnappy2.png
=========================[ Resume Incomplete Session ]:
There is 1 incomplete session that might be resumed
Do you want to resume session 'pbox-7yyhiniz'?

r => resune this session

n => next session

c => create new session

trncl:






_images/SnappyProvider2.png
X - 0O |p:~jocave/plainbox-provider-snappy : Git : Code : Snappy Provider for PlainBox - Google Chrome

Ip lp:~jocave/plainbox-prc x § =\ Jonathan

<« @ | @ Canonical Group Ltd [GB] https://code.launchpad.net/~jocave/plainbox-provider-snappy/+git/plairyy % @ =

& Jonathan Cave (jocave) *Log Out|

r Snappy Provider for PlainBox

Overview WMeJ.\LB Bugs Blueprints  Translations  Answers

|p:~jocave/plainbox-provider-snappy

Git » Ip:~jocave/plainbox-provider-snappy

Owned by‘ Jonathan Cave

Get this repository:

git clone https://git.launchpad.net/~jocave/plainbox-provider-snappy
git clone git+ssh://git.launchpad.net/~jocave/plainbox-provider-snappy

Update this repository:
git push git+ssh://git.launchpad.net/~jocave/plainbox-provider-snappy

{& This repository contains
Public information (#)

Everyone can see this
information.

(# Change repository details
(# Set repository reviewer
(# Manage webhooks

il Delete repository

@ Browse the code (@ Edit your subscription

(@ Subscribe someone else

Related source package recipes Subscribers

Jonathan Cave
& No recipes using this repository. @ a @

(@ Create packaging recipe

Related snap packages

No snap packages using this repository.

Branches

Name Last Modified | Last Commit

add-bluez-tests-category 4 minutesago  p-p-s: shift BlueZ internal tests to own category
ethernet-templating 2016-04-19 p-p-s: move ethernet tests to resource+templates
wwan-resource-causing-bootstrap-error 2016-04-19 p-p-s: fix wwan_resource job causing bootstrap errors

bluez-more-internal-tests 2016-04-15 p-p-s: add more tests from bluez-tests






_images/qml-tut-2.png
New Project

Choose a template:

Projects

@) QML App with Simple Ul (amiproject)

@ oM gt e ek

Applications
Uibrarles
Other Project
Non-Qt Project
Import Project
Files and Classes

@® QML App with simple Ul (qmake)
@® QML App with C++ plugin (gmake)
@® QML App with C++ plugin (cmake)
@® QtQuick App with QML UI (gmake)
@®) unity scope (cmake)

@ HTMLs App

@® Go app with QML UI

® web App

Desktop Templates 5

Creates a Qt Quick 2 application
project with a sample Ul contalning a
Label and a Button. This project
contalns QML code only.

Includes also unit and functional tests.

Platform independent





_images/RunningSnappy1.png
[ 1 - Collect tpn (trusted platforn module) information
[X] - Qa tests for snappy ubuntu core devices
[ 1 - Ton (trusted platforn module) smoke tests






_static/comment-close.png





_images/RunningSnappy6.png
L]
(3] SSH is enabled and operational
[ 1 Uncategorised

Expand/Collapse  [Belect ALl  [eselect AlL





_static/down-pressed.png





_static/up.png





_static/minus.png





_static/plus.png





_static/ajax-loader.gif





_static/file.png





